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What is life? 	



“The laws of physics and chemistry 
are statistical throughout.”


- E. Schrödinger	

E. Schrödinger. What is Life? Cambridge University Press, 1944.  	

What about the “laws of life” … ?	



	
Network exobiosignatures	
	Are the “laws of life” statistical too, and can 
	that inform our search?	

Statistical searches for life	
	How can we constrain the probability of  

	life in an ensemble of exoplanetary 
	atmospheres?	



NETWORK 
EXOBIOSIGNATURES	



Crash course in network theory 
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Poisson vs. Power-law Distributions
Figure 4.4

(d)

(b)(a)

(c)

(a) Comparing a Poisson function with a 
power-law function (γ= 2.1) on a linear plot. 
Both distributions have ⟨k⟩=  11.

(b) The same curves as in (a), but shown on a 
log-log plot, allowing us to inspect the dif-
ference between the two functions in the 
high-k regime. 

(c) A random network with ⟨k⟩= 3 and N = 50, 
illustrating that most nodes have compara-

ble degree k≈⟨k⟩. 

(d) A scale-free network with γ=2.1 and ⟨k⟩= 
3, illustrating that numerous small-degree 
nodes coexist with a few highly connected 
hubs. The size of each node is proportional 
to its degree.

The Largest Hub

All real networks are finite. The size of the WWW is estimated to be N ≈ 
1012 nodes; the size of the social network is the Earth’s population, about N 
≈ 7 × 109. These numbers are huge, but finite. Other networks pale in com-
parison: The genetic network in a human cell has approximately 20,000 
genes while the metabolic network of the E. Coli bacteria has only about 
a thousand metabolites. This prompts us to ask: How does the network 
size affect the size of its hubs? To answer this we calculate the maximum 
degree, kmax, called the natural cutoff of the degree distribution pk. It rep-
resents the expected size of the largest hub in a network.

It  is instructive to perform the calculation first for the exponential dis-
tribution 

For a  network with minimum degree kmin the normalization  condition                    

provides C = λeλkmin. To calculate kmax we assume that in a network of N 
nodes we expect at most one node in the (kmax, ∞) regime (ADVANCED TOPICS 
3.B). In other words the probability to observe a node whose degree exceeds 
kmax is 1/N:

(4.16)

(4.15)∫ =
∞ p k dk( ) 1
kmin

∫ =
∞ p k dk N( ) 1 .
kmax
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(a) The degrees of a random network follow a 
Poisson distribution, rather similar to a bell 
curve. Therefore most nodes have comparable 
degrees and nodes with a large number of links 
are absent. 

(b) A random network looks a bit like the na-
tional highway network in which nodes are cit-
ies and links are the major highways. There are 
no cities with hundreds of highways and no 
city is disconnected from the highway system. 

(c) In a network with a power-law degree dis-
tribution most nodes have only a few links. 
These numerous small nodes are held togeth-
er by a few highly connected hubs. 

(d)  A scale-free network looks like the air-traf-
fic network, whose nodes are airports and 
links are the direct flights between them. Most 
airports are tiny, with only a few flights. Yet, 
we have a few very large airports, like Chicago 
or Los Angeles, that act as major hubs, con-
necting many smaller airports. 

Once hubs are present, they change the way 
we navigate the network. For example, if we 
travel from Boston to Los Angeles by car, we 
must drive through many cities. On the air-
plane network, however, we can reach most 
destinations via a single hub, like Chicago. 
After [4].

Figure 4.6
Random vs. Scale-free Networks
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(a) The degrees of a random network follow a 
Poisson distribution, rather similar to a bell 
curve. Therefore most nodes have comparable 
degrees and nodes with a large number of links 
are absent. 

(b) A random network looks a bit like the na-
tional highway network in which nodes are cit-
ies and links are the major highways. There are 
no cities with hundreds of highways and no 
city is disconnected from the highway system. 

(c) In a network with a power-law degree dis-
tribution most nodes have only a few links. 
These numerous small nodes are held togeth-
er by a few highly connected hubs. 

(d)  A scale-free network looks like the air-traf-
fic network, whose nodes are airports and 
links are the direct flights between them. Most 
airports are tiny, with only a few flights. Yet, 
we have a few very large airports, like Chicago 
or Los Angeles, that act as major hubs, con-
necting many smaller airports. 

Once hubs are present, they change the way 
we navigate the network. For example, if we 
travel from Boston to Los Angeles by car, we 
must drive through many cities. On the air-
plane network, however, we can reach most 
destinations via a single hub, like Chicago. 
After [4].

Figure 4.6
Random vs. Scale-free Networks
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or Los Angeles, that act as major hubs, con-
necting many smaller airports. 

Once hubs are present, they change the way 
we navigate the network. For example, if we 
travel from Boston to Los Angeles by car, we 
must drive through many cities. On the air-
plane network, however, we can reach most 
destinations via a single hub, like Chicago. 
After [4].
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are absent. 

(b) A random network looks a bit like the na-
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ies and links are the major highways. There are 
no cities with hundreds of highways and no 
city is disconnected from the highway system. 

(c) In a network with a power-law degree dis-
tribution most nodes have only a few links. 
These numerous small nodes are held togeth-
er by a few highly connected hubs. 

(d)  A scale-free network looks like the air-traf-
fic network, whose nodes are airports and 
links are the direct flights between them. Most 
airports are tiny, with only a few flights. Yet, 
we have a few very large airports, like Chicago 
or Los Angeles, that act as major hubs, con-
necting many smaller airports. 

Once hubs are present, they change the way 
we navigate the network. For example, if we 
travel from Boston to Los Angeles by car, we 
must drive through many cities. On the air-
plane network, however, we can reach most 
destinations via a single hub, like Chicago. 
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(a) The degrees of a random network follow a 
Poisson distribution, rather similar to a bell 
curve. Therefore most nodes have comparable 
degrees and nodes with a large number of links 
are absent. 

(b) A random network looks a bit like the na-
tional highway network in which nodes are cit-
ies and links are the major highways. There are 
no cities with hundreds of highways and no 
city is disconnected from the highway system. 

(c) In a network with a power-law degree dis-
tribution most nodes have only a few links. 
These numerous small nodes are held togeth-
er by a few highly connected hubs. 

(d)  A scale-free network looks like the air-traf-
fic network, whose nodes are airports and 
links are the direct flights between them. Most 
airports are tiny, with only a few flights. Yet, 
we have a few very large airports, like Chicago 
or Los Angeles, that act as major hubs, con-
necting many smaller airports. 

Once hubs are present, they change the way 
we navigate the network. For example, if we 
travel from Boston to Los Angeles by car, we 
must drive through many cities. On the air-
plane network, however, we can reach most 
destinations via a single hub, like Chicago. 
After [4].
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(a) The degrees of a random network follow a 
Poisson distribution, rather similar to a bell 
curve. Therefore most nodes have comparable 
degrees and nodes with a large number of links 
are absent. 

(b) A random network looks a bit like the na-
tional highway network in which nodes are cit-
ies and links are the major highways. There are 
no cities with hundreds of highways and no 
city is disconnected from the highway system. 

(c) In a network with a power-law degree dis-
tribution most nodes have only a few links. 
These numerous small nodes are held togeth-
er by a few highly connected hubs. 

(d)  A scale-free network looks like the air-traf-
fic network, whose nodes are airports and 
links are the direct flights between them. Most 
airports are tiny, with only a few flights. Yet, 
we have a few very large airports, like Chicago 
or Los Angeles, that act as major hubs, con-
necting many smaller airports. 

Once hubs are present, they change the way 
we navigate the network. For example, if we 
travel from Boston to Los Angeles by car, we 
must drive through many cities. On the air-
plane network, however, we can reach most 
destinations via a single hub, like Chicago. 
After [4].
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(a) The degrees of a random network follow a 
Poisson distribution, rather similar to a bell 
curve. Therefore most nodes have comparable 
degrees and nodes with a large number of links 
are absent. 

(b) A random network looks a bit like the na-
tional highway network in which nodes are cit-
ies and links are the major highways. There are 
no cities with hundreds of highways and no 
city is disconnected from the highway system. 

(c) In a network with a power-law degree dis-
tribution most nodes have only a few links. 
These numerous small nodes are held togeth-
er by a few highly connected hubs. 

(d)  A scale-free network looks like the air-traf-
fic network, whose nodes are airports and 
links are the direct flights between them. Most 
airports are tiny, with only a few flights. Yet, 
we have a few very large airports, like Chicago 
or Los Angeles, that act as major hubs, con-
necting many smaller airports. 

Once hubs are present, they change the way 
we navigate the network. For example, if we 
travel from Boston to Los Angeles by car, we 
must drive through many cities. On the air-
plane network, however, we can reach most 
destinations via a single hub, like Chicago. 
After [4].
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Box 2 | Network models

Network models are crucial for shaping our understanding of complex networks and help to explain the origin of observed network
characteristics. There are three models that had a direct impact on our understanding of biological networks.

Random networks 
The Erdös–Rényi (ER) model of a random network14 (see figure, part A) starts with N nodes and connects each pair of nodes with probability p,
which creates a graph with approximately pN(N–1)/2 randomly placed links (see figure, part Aa). The node degrees follow a Poisson distribution
(see figure, part Ab), which indicates that most nodes have approximately the same number of links (close to the average degree <k>). The tail
(high k region) of the degree distribution P(k) decreases exponentially, which indicates that nodes that significantly deviate from the average are
extremely rare. The clustering coefficient is independent of a node’s degree, so C(k) appears as a horizontal line if plotted as a function of k (see
figure, part Ac). The mean path length is proportional to the logarithm of the network size, l ~ log N, which indicates that it is characterized by the
small-world property.

Scale-free networks
Scale-free networks (see figure, part B) are characterized by a power-law degree distribution; the probability that a node has k links follows 
P(k) ~ k –γ, where γ is the degree exponent. The probability that a node is highly connected is statistically more significant than in a random graph,
the network’s properties often being determined by a relatively small number of highly connected nodes that are known as hubs (see figure, part
Ba; blue nodes). In the Barabási–Albert model of a scale-free network15, at each time point a node with M links is added to the network, which
connects to an already existing node I with probability ΠI = kI/ΣJkJ, where kI is the degree of node I (FIG. 3) and J is the index denoting the sum over
network nodes. The network that is generated by this growth process has a power-law degree distribution that is characterized by the degree
exponent γ = 3. Such distributions are seen as a straight line on a log–log plot (see figure, part Bb). The network that is created by the
Barabási–Albert model does not have an inherent modularity, so C(k) is independent of k (see figure, part Bc). Scale-free networks with degree
exponents 2<γ<3, a range that is observed in most biological and non-biological networks, are ultra-small34,35, with the average path length
following ! ~ log log N, which is significantly shorter than log N that characterizes random small-world networks.

Hierarchical networks
To account for the coexistence of modularity, local clustering and scale-free topology in many real systems it has to be assumed that clusters
combine in an iterative manner, generating a hierarchical network47,53 (see figure, part C). The starting point of this construction is a small cluster
of four densely linked nodes (see the four central nodes in figure, part Ca). Next, three replicas of this module are generated and the three external
nodes of the replicated clusters
connected to the central node of
the old cluster, which produces a
large 16-node module. Three
replicas of this 16-node module
are then generated and the 16
peripheral nodes connected to
the central node of the old
module, which produces a new
module of 64 nodes. The
hierarchical network model
seamlessly integrates a scale-free
topology with an inherent
modular structure by generating
a network that has a power-law
degree distribution with degree
exponent γ = 1 + !n4/!n3 = 2.26
(see figure, part Cb) and a large,
system-size independent average
clustering coefficient <C> ~ 0.6.
The most important signature of
hierarchical modularity is the
scaling of the clustering
coefficient, which follows 
C(k) ~ k –1 a straight line of slope
–1 on a log–log plot (see figure,
part Cc). A hierarchical
architecture implies that sparsely
connected nodes are part of
highly clustered areas, with
communication between the
different highly clustered
neighbourhoods being
maintained by a few hubs 
(see figure, part Ca).
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organisms	

Jeong et al. “The large-scale organization of metabolic networks” Nature  
(2000) 407: 651 – 654.	
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In physics, we usually associate “universal laws” with 
properties that are scale-invariant	

21,000 bacteria taxa	

845 archaea taxa	

26 metagenomes (sampled 
from Yellowstone hotsprings)	
	

1 biosphere (generated by 
sampling all cataloged reactions in 
the Kyoto Encyclopedia of Genes 
and Genomes (KEGG))	
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Constructing biochemical reaction 
networks from genomic and 

metagenomic data	
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Sandefur et al. “Network representations and methods for the 
analysis of chemical and biochemical pathways” Mol. Biosyst.  
(2013) 9: 2189.	



Earth’s biochemistry is remarkably scale-invariant	
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Are all reaction networks similarly scale-invariant?	
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H. Kim, H.B. Smith, J. Raymond and S.I. Walker “Network theoretic constraints 
on biochemical diversity explain the universality of life on Earth” In prep	



Statistical properties of networks as 
‘universal’ exobiosignatures	

•  Earth’s biochemistry exhibits remarkably scale-invariant 
topological properties, suggestive of universal ‘laws of 
life’	
–  A Network Biosignature?	

	
•  These are not an arbitrary property of chemical reaction 

networks, but instead arise due to common core 
biochemistry and the ‘dynamic order’ of the biosphere 	
–  Will every inhabited planet have only one biosphere, and how does this 

affect detectability?	



Not  
“biological” 

THE SCALE-FREE PROPERTY 10

Poisson vs. Power-law Distributions
Figure 4.4

(d)

(b)(a)

(c)

(a) Comparing a Poisson function with a 
power-law function (γ= 2.1) on a linear plot. 
Both distributions have ⟨k⟩=  11.

(b) The same curves as in (a), but shown on a 
log-log plot, allowing us to inspect the dif-
ference between the two functions in the 
high-k regime. 

(c) A random network with ⟨k⟩= 3 and N = 50, 
illustrating that most nodes have compara-

ble degree k≈⟨k⟩. 

(d) A scale-free network with γ=2.1 and ⟨k⟩= 
3, illustrating that numerous small-degree 
nodes coexist with a few highly connected 
hubs. The size of each node is proportional 
to its degree.

The Largest Hub

All real networks are finite. The size of the WWW is estimated to be N ≈ 
1012 nodes; the size of the social network is the Earth’s population, about N 
≈ 7 × 109. These numbers are huge, but finite. Other networks pale in com-
parison: The genetic network in a human cell has approximately 20,000 
genes while the metabolic network of the E. Coli bacteria has only about 
a thousand metabolites. This prompts us to ask: How does the network 
size affect the size of its hubs? To answer this we calculate the maximum 
degree, kmax, called the natural cutoff of the degree distribution pk. It rep-
resents the expected size of the largest hub in a network.

It  is instructive to perform the calculation first for the exponential dis-
tribution 

For a  network with minimum degree kmin the normalization  condition                    

provides C = λeλkmin. To calculate kmax we assume that in a network of N 
nodes we expect at most one node in the (kmax, ∞) regime (ADVANCED TOPICS 
3.B). In other words the probability to observe a node whose degree exceeds 
kmax is 1/N:

(4.16)

(4.15)∫ =
∞ p k dk( ) 1
kmin

∫ =
∞ p k dk N( ) 1 .
kmax
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(a) The degrees of a random network follow a 
Poisson distribution, rather similar to a bell 
curve. Therefore most nodes have comparable 
degrees and nodes with a large number of links 
are absent. 

(b) A random network looks a bit like the na-
tional highway network in which nodes are cit-
ies and links are the major highways. There are 
no cities with hundreds of highways and no 
city is disconnected from the highway system. 

(c) In a network with a power-law degree dis-
tribution most nodes have only a few links. 
These numerous small nodes are held togeth-
er by a few highly connected hubs. 

(d)  A scale-free network looks like the air-traf-
fic network, whose nodes are airports and 
links are the direct flights between them. Most 
airports are tiny, with only a few flights. Yet, 
we have a few very large airports, like Chicago 
or Los Angeles, that act as major hubs, con-
necting many smaller airports. 

Once hubs are present, they change the way 
we navigate the network. For example, if we 
travel from Boston to Los Angeles by car, we 
must drive through many cities. On the air-
plane network, however, we can reach most 
destinations via a single hub, like Chicago. 
After [4].

Figure 4.6
Random vs. Scale-free Networks
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Fig. 1 – (a) Defining the reaction graph for a set of three reactions indicated in the upper part: directed
bipartite graph (l.h.s) and undirected substrate graph (r.h.s), where the links between reactants and
between products (dashed) may be considered or disregarded. (b) The overall reaction graph for
Martian atmosphere is shown. (c) A subgraph of Earth’s CRN. See text for details.

planetary missions and further modeling. Using the general approach of complex networks [5]
we explore here the large-scale topology of the chemical networks associated to the interstellar
medium and planetary atmospheres. As will be shown, two basic types of networks are found,
being associated with the presence or absence of life.

Reaction graphs. – A CRN can be viewed as a graph where chemical species are nodes and
edges represent conversion between chemicals. The most simple and typical representations
of a reaction graph are shown in fig. 1a as a directed bipartite graph (l.h.s) and an undirected
substrate graph (r.h.s). We have chosen to disregard the connections between the reactants,
on one side, and between the products, on the other side (the dashed lines in fig. 1a). In
fig. 1, we also show as examples the undirected substrate graphs associated to the chemical
reactions of the Martian atmosphere (panel b) and a subgraph of the Earth network (panel
c).

Two basic features common to many complex networks, from the Internet [7,8] to cellular
nets [9,10] are their scale-free topology [11] and small-world structure [12,13]. The first states
that the proportion of nodes P (k) having degree k decays as a power law P (k) ∼ k−γφ(k/ξ),
with γ ≈ 2− 3 for most complex networks [7,11,14] and with the function φ(k/ξ) introducing
a cut-off at some characteristic scale ξ. The power-law distribution has no natural scale and
from here networks with such distributions are called scale-free. The second refers to a web
characterized by a very small diameter (average shortest path between any two vertices) along
with a large clustering [12,13]. The average path length ⟨L⟩ is the average minimum distance
d(i, j) between any pair (i, j) of vertices:

⟨L⟩ =
1

V (V − 1)

∑

∀i,j

d(i, j), (1)

The clustering coefficient Ci associated to a node i characterizes the density of links in its
neighborhood (the fraction of its neighbors that are also neighbors of each other). It is defined
as Ci = 2Vi/Ni(Ni−1), being the ratio between the total number of links, Vi between its nearest
neighbors, Ni and the total number of all possible edges between all these nearest neighbors.
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Table I – Network characteristics: V = vertices; E = edges; ⟨K⟩ = mean degree; ⟨L⟩ = averaged

shortest path; ⟨C⟩ = mean clustering; r = assortativity. See text for more details. ISM: Interstellar
medium; HC : hydrocarbon chemical network of the giant planets

V E ⟨K⟩ ⟨L⟩ ⟨Lrand⟩ ⟨C⟩ ⟨Crand⟩ r rrand Modular
Earth 248 778 6.27 2.75 3.20 0.31 0.025 -0.31 -0.006 YES
Mars 31 144 9.29 1.89 1.73 0.61 0.31 -0.10 -0.007 NO
Titan 71 396 11.16 2.08 1.98 0.55 0.16 -0.17 -0.03 NO
Venus 42 175 8.33 2.07 1.94 0.59 0.20 -0.14 -0.06 NO
HC 39 270 13.85 1.65 1.64 0.68 0.37 -0.26 -0.06 NO

ISM 400 6102 30.51 1.99 2.01 0.52 0.07 -0.24 -0.006 NO

E.coli 741 2310 6.24 3.02 3.82 0.183 0.008 -0.17 0.004 YES

The average value, ⟨C⟩ is the clustering coefficient of the network and may be considered as
an indicator of a potential modularity [15], as discussed below. For a small world, we have
< L >≈< Lrand > whereas < C >≪< Crand >, where the index rand refers to the random
counterparts of the network under consideration [12, 13].

Astrophysical networks. – A first analysis of the CRNs of planetary atmospheres was
included in [16] who considered the chemical data reported in [4] and concluded that the Earth
chemical network has a scale-free degree distribution. In the quantum chemistry framework,
Patra et al. [17] proposed a reaction mechanism for certain interstellar reactions using a
graph-theoretical approach. The present work is a thorough exploration from the complex
networks perspective of the complete data set concerning the planetary atmospheres and the
astrochemical network, including the hydrocarbon chemistry of the jovian planets [4]. Among
the planetary networks, the chemical reactions associated to the Titan’s atmosphere were
taken from [18], involving 99 more chemical reactions than in [4].

We have determined the average characteristics of the planetary CRNs and of the as-
trochemical UMIST network. These measures are given in table I. A first result from this
analysis (consistently with [16]) is that all networks are small worlds. The sparser of these
nets is Earth, with an average degree, path length and clustering similar to those displayed
by the metabolic network of E. coli, which has a similar size.

Column 9 gives the assortativeness [19] defined as:

r =
E−1

∑
i jiki − [E−1

∑
i

1
2
(ji + ki)]2

E−1
∑

i
1
2
(j2

i + k2
i ) − [E−1

∑
i

1
2
(ji + ki)]2

, (2)

where ji,ki refer to the degrees of the nodes at the ends of ith link, with E being the total
number of edges and i = 1, E. The assortativity coefficient quantifies the propensity of nodes
to connect to nodes of similar degree. Complex networks tend to be disassortative (i. e. r < 0),
reflecting low-degree nodes’ tendency to be connected to high-degree nodes, consistently with
the patterns displayed in fig. 1c. As it results from table I, the Earth’s atmosphere network
and the astrochemical network present a pronounced disassortative character, while the rest
of the planetary networks show more neutral r values.

The heterogeneous character of the degree distributions is displayed in fig. 2 using the
cumulative distribution for these networks. It is defined as Pcum(k) =

∫ ∞

k
P (k′)dk′ which

gives Pcum(k) ∼ k−γ+1 for scale-free nets. Both log-log and linear-log plots are shown in

Sole and Munteanu. (2004) The large-scale organization of chemical reaction networks in 
astrophysics. Europhysics Le`ers 68.2: 170.	

A network-theoretic comparison of inhabited and 
un-inhabited worlds 	



1.  Constrain current models for atmospheres of 
biotic and abiotic origin (if interested in having us look at 
your models, please talk to Tessa and Harrison!)	

–  Is this a universal biosignature?	
–  Are there false positives?	

	
2.  Develop methods for inferring network 

statistics directly from spectral data	

Statistical properties of networks as 
‘universal’ exobiosignatures	





STATISTICAL SEARCHES FOR 
LIFE	



It’s habitable, but is life detectable?	



“The laws of physics and chemistry 
are statistical throughout.”


- E. Schrödinger	

E. Schrödinger. What is Life? Cambridge University Press, 1944.  	



 

  

Figure V.4: A periodic Table of Planets, with detectability indices 
for O2 and CH4 tabulated. 

can that species be considered a reliable biosignature.  

These investigations will guide the 
interpretation of data from future 
missions like JWST and TESS, and 
guide the planning of missions like 
WFIRST-AFTA. These are all 
pioneering studies into the 
burgeoning field of exoplanets. They 
are the logical and necessary next 
steps, and highly relevant to the 
NAI’s mission and to the field of 
astrobiology. The Exoplanetary 
Ecosystems team we have assembled is 
uniquely suited—in the breadth of 
science expertise, as well as our 
interdisciplinary heritage and ability 
to integrate across fields—to 
progress on the central question we 
pose: “On which exoplanets is life 
most detectable?”   

Coda: An Historical Future of Exoplanet Discovery 

“So where are we going to find a habitable planet? Or put it this way—which star within reach of 
the Space Jump as presently developed, which of the three hundred thousand stars and star systems 
within three hundred light-years has the best chance of having a habitable planet? We’ve got an 
enormous quantity of details on every star in our three-hundred-light-year neighborhood and a 
notion that almost every one has a planetary system. But which has a habitable planet? Which do we 
visit? … We don’t know.”  

These prescient questions were posed by a scientist in Isaac Asimov’s 1969 short story, Feminine 
Intuition. Science fiction has long inspired many of our team members, but now science has outpaced 
fiction: planetary systems are not merely notions, and the search for habitable planets is coming to 
fruition. The need to prioritize our searches persists;; but this time we ask, “On which planets are we 
best able to detect evidence of life?” This is the new story being written now for the next generation 
of astrobiologists. 
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Compositions of exoplanets will be evaluated 
probabilistically 	

Biosignatures will also be known probabilistically … 	

ASU NEXSS  
“Exoplanetary 
Ecosystems” 

Lenardic A., et. al. “The Solar System of Forking Paths: Bifurcations in Planetary Evolution 
and the Search for Life-Bearing Planets in Our Galaxy” Astrobiology. July 2016, Vol. 16, No. 7: 
551-559.	



What should be our goal?	

Evaluate the implications of the various 
parameters for exoplanetary ecosystem 
detectability in a quantitative framework. 



Given a spectra detected on an exoplanet, what is 
the probability it is a product of life?	

This is a conditional statement:	

Conditional statements are naturally accommodated in 
Bayesian probability theory.	

P (life|D)



Bayes Theorem	

““Bayesian reasoning” is a fancy phrase for “the use of probabilities to 
present degree of believe, and the manipulation of those probabilities in 
accordance with the standard rules [of probability theory]”


-Simon DeDeo	
Lecture on Bayesian	

Reasoning for Intelligent People 	

P (H|D) =
P(D|H)P(H)

P (D)



Bayesian analysis in astrobiology	

•  Spiegel and Turner “Bayesian analysis of the astrobiological 
implications of life’s early emergence on Earth” PNAS (2012) 109: 
395-400. 	

•  Carter, B. and McCrea, W. “The anthropic principle and its 
implications for biological evolution” Phil. Trans. R. Soc. A (1983) 
310:347 – 363.	

P(Life) is unconstrained  



Detectability depends on P(life)	

P (life|D) =
P(D|life)P(life)

P (D)

“Odds” ratio: 

P (life|D)

P (life|D)
=

P (life)

P (life)
⇥ P(D|life)

P(D|life)

priors likelihoods 

Bayes Factor 



A toy example 

Assume                   and                    are normally 
distributed.  	

P (D|life) P (D|life)

P (D|life)

P (D|life)



A toy example 

P (D|life)



A toy example 

P (D|life)

measured	

Signature 
of life 



A toy example 

Intuition is confirmed by the “Odds ratio”:	
(assuming a flat prior)	

1

100

104

106 P (life|D)

P (life|D)
=

P (life)

P (life)
⇥ P(D|life)

P(D|life)



A toy example 

What if the prior is not flat? 	

P (D|life)

P (life)



A toy example 

P (D|life)

measured	

Signature 
of life 



A toy example 

Our “Odds ratio” is very different:	

P (life|D)

P (life|D)
=

P (life)

P (life)
⇥ P(D|life)

P(D|life)

10-29

10-19

10-9

10



Detecting Life will depend on a 
number of factors	

•  Confidence level in abiotic sources	
•  Confidence level in biotic sources	
•  Size of statistical ensemble of exoplanets	

–  Our search strategies should be different if we target a few planets with 
high resolution or many with lower resolution.	

•  The probability of life.	

We should as a community be able to 
quantify these parameters to inform the best 
search strategies given available data.  



Constraints on 2nd 	
sample of life	

Uncover universal 
“laws” of life	Plife = ?

Experiments to 
create de novo 
life in the lab	

Identify regions of 
planetary parameter 
space where life is 

excluded	

Find evidence of alien 
life in our solar system, 
or in another planetary 

system	

Develop a 
theory of life	



“…living matter, while not eluding the "laws of physics" as 
established up to date, is likely to involve "other laws of 
physics" hitherto unknown, which however, once they 
have been revealed, will form just as integral a part of 
science as the former” 

E. Schrödinger. What is Life? Cambridge University Press, 1944.  	



	
“One can best feel in dealing with living systems how 
primitive physics still is.”


	
– Albert Einstein


 	



Life	
?%	



Emergence@ASU


Thanks! 

Web: www.emergence.asu.edu

Email: sara.i.walker@asu.edu 
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