f" s Sara Iman Walker i |

L - School of Earth and Space Exploratmn i L

B BEYOND Center for Fundamental Concepts in Sc1ence G

; 3 ASTH NEXS% Exoplanetary Ecosystems Team v .
T Ar1zona State Un1ver51ty

) “.'

$

. 5

. 4o



The Team

Tessa Fisher

Jason
Raymond

Harrison
Smith

Hyunju Kim



What 1s lzfe7

)
>
—
D
q
3
=
=7
[ -
©
2
=3
<o
N
—{®D
me=.
T
.
—_
—

>
:E

D molecules aqueous. medium
g conditionspattern

tilevel moleculebern
nstructlo@l gmuttievel

26822127 C— o?
rocessing @containing © Erepr uces
—self-reading ‘Eby compoundsusnwronmen al

eproducing . elf-organized DUCTION
polymersS5'g @-£C 98&%%?%%“@ llcatron order=" " surroundings
exc 998 R ecular—informational S °auto oretncs -qeneratun £ self-replication

ENVIRONMENT‘.B—Se" “reprodyctionzenergetica energy- ependent rearrangement

: condntro all fIUIdoauto oiesis olysaccharides
thermodynamics mcself_repllcatmg S Em o ynents«: plnfonn ion gth)yraq &Fa
reproduce eS:3self-producing = < ntr
poly ot gesgreqeneratlon O °§.V3e%ro°8 a ing force .m.o builglnqprgqram -controlled
tuate > © thermodynamica
% E‘S chemistry g aggregat es 2 Oself- reprodxrc‘ecarbonm

assembly 2 & mutabiityblosystem & &°°priBinacecue o
& automato}lwsE G substances €ngines=-g Prote Smm municate =

Esubstancelnformatlon mprOdUCt'O" ensembles o
&%tte’.'r‘,gtr%'ﬁ lic te @ E reading materialsf %’b% K automata =
capable meta o|c evolvedrecreate ammate ENERGY

: enaine ks animated = evolve
d|9|tagadg Mmutatis signal  contain 8. < ordered

ons

vangogqupro ein forces

& patternsPodrem

9 systems .
mmetabohz

S biological
p%rpe?t?at ed

e
energies
eactl
nnued

instructions<
n

tember

-

T DO

licate

conditioned
osphere
precursors
"'decay

P

wknowled

controlled
self-correctlo

g
_—..Downloaded"‘

aci
&vor.m
> consistin
‘mutation.
or(;anlc'n
bioelemen

0
o
]

o
25
o8

Trifonov, Edward N. "Vocabulary of definitions of life suggests a definition." Journal of
Biomolecular Structure and Dynamics 29.2 (2011): 259-266.



“The laws of physics and chemistry
are statistical throughout.”
- E. Schrodinger

What about the “laws of life” ... ?

E. Schrodinger. What is Life? Cambridge University Press, 1944.



Network exobiosignatures

Are the “laws of life” statistical too, and can
that inform our search?

Statistical searches for life

How can we constrain the probability of
life in an ensemble of exoplanetary
atmospheres?



NETWORK
EXOBIOSIGNATURES
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“Power—Laws” in
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In physics, we usually associate “universal laws” with
properties that are scale-invariant

Organisms

21 ,OOO bacteria taxa
845 archaea taxa

26 metagenomes (sampled
from Yellowstone hotsprings)

]. biosphere (generated by
sampling all cataloged reactions in
the Kyoto Encyclopedia of Genes
and Genomes (KEGQG))



Constructing biochemical reaction
networks from genomic and
metagenomic data
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Earth’s biochemistry is remarkably scale-invariant
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Earth’s biochemistry is remarkably scale-invariant
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Earth’s biochemistry is remarkably scale-invariant
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Are all reaction networks similarly scale-invariant?
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Artificial networks with the same topology for
individual organisms are not scale-invariant
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Artificial networks with the same topology for
individual organisms are not scale-invariant
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H. Kim, H.B. Smith, J. Raymond and S.I. Walker “Network theoretic constraints
on biochemical diversity explain the universality of life on Earth” In prep



Statistical properties of networks as
‘universal’” exobiosignatures

* Earth’s biochemistry exhibits remarkably scale-invariant
topological properties, suggestive of universal ‘laws of
life’

— A Network Biosignature?

* These are not an arbitrary property of chemical reaction
networks, but instead arise due to common core
biochemistry and the ‘dynamic order’ of the biosphere

— Will every inhabited planet have only one biosphere, and how does this
affect detectability?
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A network-theoretic comparison of inhabited and
un-inhabited worlds

TABLE I — Network characteristics: 'V = vertices; E = edges; (K) = mean degree; (L) = averaged
shortest path; (C) = mean clustering; r = assortativity. See text for more details. ISM: Interstellar
medium; HC' : hydrocarbon chemical network of the giant planets

\Y% E (K) (L) | (Lrana) | (C) | (Crand) r Trand | Modular
BEarth | 248 | 778 6.27 | 2.75 3.20 0.31 0.025 -0.31 | -0.006 YES
Mars 31 144 9.29 | 1.89 1.73 0.61 0.31 -0.10 | -0.007 NO

Titan | 71 396 | 11.16 | 2.08 1.98 0.55 0.16 -0.17 | -0.03 NO
Venus | 42 175 8.33 | 2.07 1.94 0.59 0.20 -0.14 | -0.06 NO
HC 39 270 | 13.85 | 1.65 1.64 0.68 0.37 -0.26 | -0.06 NO

ISM | 400 | 6102 | 30.51 | 1.99 2.01 0.52 0.07 -0.24 | -0.006 NO
E.coli | 741 | 2310 | 6.24 | 3.02 3.82 0.183 0.008 -0.17 | 0.004 YES

Sole and Munteanu. (2004) The large-scale organization of chemical reaction networks in
astrophysics. Europhysics Letters 68.2: 170.



Statistical properties of networks as
‘universal” exobiosignatures

1. Constrain current models for atmospheres of

biotic and abiotic origin (if interested in having us look at

your models, please talk to Tessa and Harrison!)
—  Is this a universal biosignature?
—  Are there false positives?

2. Develop methods for inferring network
statistics directly from spectral data
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STATISTICAL SEARCHES FOR
LIFE



It’s habitable, but is life detectable?



“The laws of physics and chemistry
are statistical throughout.”
- E. Schrodinger

E. Schrodinger. What is Life? Cambridge University Press, 1944.



Compositions of exoplanets will be evaluated

probabilistically | T
5 ?
ASU NEXSS s
“EXo F?Law\&m‘:j e g
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Y - >
Water World Earth Desert Planet
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Biosignatures will also be known probabilistically ...

Lenardic A., et. al. “The Solar System of Forking Paths: Bifurcations in Planetary Evolution
and the Search for Life-Bearing Planets in Our Galaxy” Astrobiology. July 2016, Vol. 16, No. 7:
551-559.



What should be our goal?

Evaluake the implicakions of the various
parameters for exoplanetary ecosystem
detectability in a guantitative framework.



Given a spectra detected on an exoplanet, what is
the probability it is a product of life?

This is a conditional statement:

P(life| D)

Conditional statements are naturally accommodated in
Bayesian probability theory.



Bayes Theorem

P(DJH)P(H)
P(D)

P(H|D) =

““Bayesian reasoning” is a fancy phrase for “the use of probabilities to

present degree of believe, and the manipulation of those probabilities in
accordance with the standard rules [of probability theory]”

-Simon DeDeo

Lecture on Bayesian

Reasoning for Intelligent People



Bayesian analysis in astrobiology

* Spiegel and Turner “Bayesian analysis of the astrobiological
implications of life’s early emergence on Earth” PNAS (2012) 109:
395-400.

« Carter, B. and McCrea, W. “The anthropic principle and its
implications for biological evolution” Phil. Trans. R. Soc. A (1983)
310:347 — 363.

P(Life) is unconstrained



Detectability depends on P(life)

P (D |life)P(life)

P(life| D) = PD)

“OdAs” rabio:

priors lilkeelthoods

P(life|D)  P(life)

P(life|D) ~ P(Tife)

RBa yes rFactor



A &)v exam[pté

Assume P (Dl|life) and P(D|life) are normally
distributed.
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A &03 exam[pté

measured = =

P(Dl|life)

Sighature

of Life




A &)v exam[pté

Intuition is confirmed by the “Odds ratio”:

(assuming a flat prior)

o} P(lifelD) _ P(life)  P(Dllife)

P(life|D)  P(life)  P(Dl|life)
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What if the prior is not flat?
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A &03 exam[pté

measured = =

P(Dl|life)

Sighature

of Life




A toy example
Our “Odds ratio” is very different:

P(lifelD) _ P(life)  P(Dllife)

P(ife|D)  P(life)  P(Dlite)




Detecting Life will depend on a
number of factors

Confidence level in abiotic sources

Confidence level in biotic sources

Size of statistical ensemble of exoplanets

— Our search strategies should be different if we target a few planets with
high resolution or many with lower resolution.

* The probability of life.

We should as a community be able to
quantify these parametersto inform the best
search strategies given awailable data.



Find evidence of alien
life in our solar system,
or in another planetary
system

Experiments to

create de novo
life in the lab

Uncover universal
“laws” of life

Constraints on 2nd
sample of life

Identify regions of
planetary parameter
space where life is
excluded

Develop a
theory of life




“...living matter, while not eluding the "laws of physics" as
established up to date, is likely to involve "other laws of
physics"” hitherto unknown, which however, once they

have been revealed, will form just as integral a part of
science as the former”

E. Schrodinger. What is Life? Cambridge University Press, 1944.



“One can best feel in dealing with living systems how
primitive physics still is.”

— Albert Finstein
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Thawnlkes!

Emergence@ASU

Web: www.emergence.asu.edu
Email: sara.i.walker@asu.edu

ASU Nexus for Exoplanet System Science

NES

The search for life outside our solagsystem starts here.

Exobiology Grant No.
NNXI5AL24G



