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PART	1:		

Ideas	for	finding	life	remotely:	

1.  Search for Extraterrestrial Intelligence (SETI)  
 legit approach, but not the focus of this talk/meeting 

 
2.  Biogenic surfaces 

 microbial or multicellular pigments-discussed yesterday 
 somewhat 

 
3.  Biogenic gases 

 Which gases? How many gases? What levels 
 constitute life detection? Why chemical disequilibrium?  



Part	1	Chemical	disequilibrium	as	a	sign	of	life?		
“Kine&c	instability	in	the	context	of	local	chemical	and	physical	
condi&ons…”	Joshua	Lederberg	(1965)	Nature	
	
More	than	one:	“Search	for…compounds	in	the	planet’s	atmosphere	
that	are	incompa&ble	on	a	long-term	basis”	James	Lovelock	(1965)	
Nature		
	
“gaseous	oxygen…and	atmospheric	methane	in	extreme	thermodynamic	
disequilibrium...are	strongly	sugges&ve	of	life	on	Earth”	Carl	Sagan	
(1993)	Science	
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Modern incarnation: Biogenic gases in reflectance spectra 

If photosynthesis ceased, 
O2 decreases 
exponentially to <0.4% in 
~10 m.y. 
 
Proposed search to 
Earth-like exoplanets for 
O2 and CH4 

<0.3 ppmv O2 

0.1% O2 

21% O2 

Br
ig
ht
ne

ss
	te

m
pe

ra
tu
re
	(K

)	

wavelength	(μm)	



Disequilibrium applies to waste biogenic gases, but 
it’s nuanced: 

 

  

 

1) All planetary atmospheres are in 
disequilibrium 

- Geophysics competes with biology. How much? 

2) Life feeds on disequilibrium so 
sometimes disequilibrium might mean “no 
one home” i.e., 

uneaten free food=> no grad students 
no life 

uneaten free food=> no grad students 



Atmospheric	disequilibrium	as	a	biosignature	on	exoplanets?	
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e.g.,	back-of-envelope	es[mate:	CH4	in	fixed	bulk	air	

 CH4 +  2O2 ! CO2 +  2H2O
ΔGreaction

0 = Gproducts
0∑ − Greactants

0∑ = −817.9 kJ mol-1

Keq, 298K = activity product of products
activity product of reactants

= aG
gaH

h

aB
baC

c = exp −ΔGreaction
0

RT
⎛
⎝⎜

⎞
⎠⎟

Nega[ve:	thermodynamically	favored,	with	equilibrium	constant	for	

pCH4 ~ (pCO2 )(aH2O )
(pO2 )2Keq

= 380 ×10−6

(0.21)2 ×10143.29 = 10−145  bar

Hence,	equilibrium	methane	in	0.21	bar	O2	and	380	ppmv	CO2	is:	

(net)	

But	actual	CH4	abundance	is	1.8	x	10-6	bar	

bB + cC = gG + hH      of	



Equilibrium	of	each	gas	with	fixed	bulk	air:	
O2,	N2,	CO2,	H2O(g)	

Gas	 Abundance	 Equilibrium		
abundance	

Source	 Detectable	in	
Galileo	NIR	
spectra	of	
Earth?	

CS2	 10-11	–	10-10	 ~0	 >80%	Biology;	+	volcanic	

OCS	 10-10	 ~0	 Biology	+	photochemistry	

SO2	 10-11	–	10-10	 ~0	 Volcanic	+	photochemistry	

CH4	
	

1.8	×	10-6	
	

10-145	 >90%	biology;	+	
geothermal	

NH3	 10-10	–	10-9	 10-60	 Biology	

O3	 10-8	–	10-7	 3	x	10-30	 Biology	+	photochemistry	

N2O	 3		×	10-7	 2	x	10-19	 Biology	(+minor	abio[c)	

Note:	Number	of	molecules	in	Earth’s	atmosphere	~1044	



Bringing	all	gases	to	equilibrium	(Gibbs	
energy	minimiza[on	formal	solu[on):	

Gas	 Abundance	 Equilibrium		
abundance	

Source	 Detectable	in	
Galileo	NIR	
spectra	of	
Earth?	

CH4	
	

1.8	×	10-6	
	

10-48	 >90%	biology;	+	
geothermal	

O3	 10-8	–	10-7	 2	x	10-30	 Biology	+	photochemistry	

N2O	 3		×	10-7	 3	x	10-20	 Biology	(+minor	abio[c)	

Note:	Number	of	molecules	in	Earth’s	atmosphere	~1044	



Assuming	esDmates	of	gas	
abundances…e.g.,	

Invert	bands	of	well-
mixed	gas	(i.e.,	CO2	
@4.3μm;	4.8μm)		

Temperature-
pressure	profile	

CH4,	N2O,	H2O,	O3	
abundances,	albeit	
non-unique	ver[cal	

distribu[on	

Radia[ve	transfer	
model	+	retrieval/fit	
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wavelength	(μm)	
Galileo	Near-IR	Mapping	Spectrometer	(Drossart+,	1993)	
NIMS’	long-visible,	O2	band	@0.76	μm	=>	column	O2	
I	believe	N2	was	assumed	by	Sagan+	(1993).	
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PART	2A:		
	

	Does	thermodynamic	disequilibrium	(in	
Gibbs	energy/mole	air)	in	Solar	System	
atmospheres	act	as	a	metric	for	life?	

	
	



Can	quanDfy	chemical	disequilibrium	

15	

Observed	atmosphere
		

Atmosphere	if	it	were	in	
chemical	equilibrium	
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Observed	atmosphere
		

Atmosphere	if	it	were	in	
chemical	equilibrium	

We	quan[fy	disequilibrium	as	the	change	in	Gibbs	energy	of	the	
system	during	reac[on	to	equilibrium:	

  
Available energy, ΔG = G(T ,P) (observed)−G(T ,P) (equilibrium)

Applied	to	Solar	System	atmospheres….	

    
G(T ,P) = ni(Gi

°
(T ,Pr ) + RT ln(

Pγini

ntot

))
i
∑

moles	gas	i,	
ac[vity	coeff.	γi		

total	moles	air;	do	it	for	1	
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( ,P) ( ,P)

Available energy,
( ) ( )

0.001

Δ = −

Δ =
T TG G obser G equil

G J /mol

Part	1	

Jupiter	



( ,P) ( ,P)

Available energy,
( ) ( )

136

Δ = −

Δ =
T TG G obser G equil

G J /mol

Mars	

  O2 + 2CO! 2CO2

Part	2A	



Venus	

( ,P) ( ,P)

Available energy,
( ) ( )

0.06
T TG G obser G equil

G
Δ = −

Δ = J /mol

Venus	



( ,P) ( ,P)

Available energy,
( ) ( )

1.5

Δ = −

Δ =
T TG G obser G equil

G J /mol

Earth	(atmosphere	only)	
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  2O2 +CH4 ! CO2 + 2H2O



Typical surface of Mars 



Typical surface of planet Earth 

(2012:     13°S, mid-Atlantic, 3.8 km depth of water ) 

Photo on way to Ascension Island from St. Helena: David Catling 



Earth	(atmosphere-ocean	fluid	envelope)	

Gilbert Lewis (1923): “starting with air and water…nitric acid should form. It is to be hoped that 
nature will not discover a catalyst for this reaction, which would… turn the oceans into dilute nitric 
acid”. 

Available energy,
2326Δ =G J /mol
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Atmospheric	species	

Aqueous	species	



Available energy,
2326Δ =G J /mol

Earth	(atmosphere-ocean	fluid	envelope)	
Atmospheric	species	

Aqueous	species	

  2N2(g)+5O2(g)+ 2H2O(l)! 4H+ (aq)+ 4NO3
− (aq)

Gilbert Lewis (1923): “starting with air and water…nitric acid should form. It is to be hoped that 
nature will not discover a catalyst for this reaction, which would…turn the oceans into dilute nitric 
acid”. 
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Earth	has	largest	disequilibrium	in	the	
solar	system	

Part	2A	



Earth	has	largest	disequilibrium	in	the	
solar	system	

Only	on	Earth	is	available	energy	≈	thermal	energy	of	air	

Part	2A	



Is	this	pracDcal	for	exoplanets?	
-	For	exoplanets,	thermodynamic	disequilibrium	(in	principle)	could	be	
computed	from	observa[ons	without	assump[ons	about	gas	fluxes.	
	
-	Bulk	abundance,	oceans,	and	total	pressure	are	observa[onal	
challenges,	but	have	been	considered:	

	-	N2	from	N2-N2	dimer	absorpDon,	4.3	μm		
	(Schwieterman+	2015).	
	-	Ocean	presence	from	specular	glint	+	H2O-rich	spectra		
	(e.g.,	Lack	of	glint	on	Mars:	Phillips	(1863)	Proc.	Roy	Soc.	Lond.;	
	Sagan+	1993;	Robinson+	2010;	2014)	
	-	Pressure	from	O2-O2	dimer,	1.06	&	1.27	μm		
	(Misra+	2014).	

	
-	Sensi[vity	tests	to	difficult-to-observe	variables	in	the	calcula[on	show	
relaDve	insensiDvity	

Part	2A	



SensiDvity	test	 Part	2A	
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SensiDvity	test	 Part	2A	



SensiDvity	test	

(extra	
slides)	
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What	does	disequilibrium	mean?		
	
-  Some[mes	thermodynamic	disequilibrium	means	life.	

	
	
	
	
	
	
	

  CO2 + H2O→O2 + CH2O

2O 2N

3NO-

Biological	nitrate	
reduc[on	
(denitrifica[on)	

Oxygenic	
photosynthesis	

Respira[on	

Biology:	fixa[on	+	nitrifica[on	

Part	2A	



	
	
-  Some[mes	thermodynamic	disequilibrium	means	life.	

	
	
	
	
	
	

-  But	some[mes	thermodynamic	disequilibrium	means	the	
absence	of	life	(anD-biosignature).	

	Large	available	energy	=	an	“uneaten	free	lunch”	->	no	life	
	exists	or	“no	one	home”	

  CO2 + H2O→O2 + CH2O

2O 2N

3NO-

Biological	nitrate	
reduc[on	
(denitrifica[on)	

Oxygenic	
photosynthesis	

Respira[on	

Biology:	fixa[on	+	nitrifica[on	

What	does	disequilibrium	mean?	
Part	2A	



( ,P) ( ,P)

Available energy,
( ) ( )

136

Δ = −

Δ =
T TG G obser G equil

G J /mol

A	primi[ve	metabolism:	
2 2 2CO H O CO H+ → +

Much	CO	=>	no	life	today	on	the	surface	of	Mars.	(Weiss	et	al.	2000;	Zahnle	et	al.	
2011).	We	calculate:	≤100	blue	whales	equiv.	CO-eaDng	biomass	in	subsurface.		

Mars	 Part	2A	



What	does	disequilibrium	mean?		
	
-  Some[mes	thermodynamic	disequilibrium	means	life.	

	
	
	
	
	
	

-  But	some[mes	thermodynamic	disequilibrium	means	the	
absence	of	life:	anD-biosignature.	Large	available	energy	=	an	
“uneaten	free	lunch”	->	no	life	exists.	

-  Conclusion:	a	single	number	metric	like	available	energy	has	to	
be	considered	judiciously	–	in	context.	

  CO2 + H2O→O2 + CH2O

2O 2N

3NO-

Biological	nitrate	
reduc[on	
(denitrifica[on)	

Oxygenic	
photosynthesis	

Respira[on	

Biology:	fixa[on	+	nitrifica[on	
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PART	2B	(brief)		
KineDc	metrics	



LifeDmes,	sources,	sinks	
Concentra[on	C;	

Part	2B	

abundance	 lifeDme	
(years)	

Source	
(Tmol/
yr)	

AbioDc	
fracDon	

CH4	 1.8	ppmv	 10	 30	 <10%	

N2O	 0.3	ppmv	 120	 ~1	 negligible	

∂C
∂t

= −λt⇒C = C0 exp(−λt) =>	Life[me	=	1/λ	

λ	calculated	from	photochemical	sinks.		Examples	below.	

To	es[mate	source	=	sink,	need	to	know:	
1)  CH4	+	OH		 	 	loss	of	CH4	
2)  Mainly	N2O	photolysis	loss	in	stratosphere	(plus	some	N2O	+	O(1D))	



O3	

O(1D)	
excited	

H2O(g)	

OH	
‘detergent’	

O(3P)	
ground	
state	

O2	

Muck:	
NH3,	CO,	H2S,	SO2	
CH4,	organics	
NO2	

hv	
hv	

oxidaDon	

Keys:	O3	and	H2O(g)	generate	OH	radicals;	O3	photol.	<340	nm	->O(1D) 
	 		

	 	H2O	+	O(1D)	è	OH	+	OH 		 
 
OH oxidizes muck => air transparent to visible (no significant haze at alt.) 

   

O2,	N2	
NO2	 NO	

To	know	OH	sink	on	CH4	need	to	know…	

rain	

Schema[c:	Essen[als	of	Earth’s	tropospheric	chemistry:	See	review:	D.	C.	Catling	(2015)	
Planetary	Atmospheres	in	Trea&se	on	Geophysics	(2nd	Ed.),	vol	10,	Elsevier,	New	York,	429-472.	



KineDcs	=>	Source	fluxes	
Bo@om	lines:		
	
1)  We	get	a	source	flux	from	balancing	a	sink	

flux,	which	requires	a	knowledge	of	the	
atmospheric	chemistry	beyond	that	for	
thermodynamic	equilibrium	from	bulk	gases	

2)  Abio[c	vs.	bio[c	source	flux	is	s[ll	a	ques[on	
of	degree:	

-  plausible	biomass?	
-  implausible	abio[c	flux?	

		
	
	



Part	3:	Future	work	
1)	Current	to-do	list:	more	diseqm	cases;	kine)c	metrics		
-	deducing	unusual	gas	fluxes,	given	expected	lifeDmes	
-	ways	to	quanDfy	this;	metrics	
	
2)	The	full	shebang	with	a	Bayesian	approach:		
	
spectrumà	inversion	à	gases	+/-	errors	à	metrics	+/-	
errors	à	probability	of	whether	life	is	present	
	
	=Project	of	VPL/UW	astrobiology	PhD	student	Josh	Krissansen-To@on:	



Summary	
-	Earth	has	the	largest	disequilibrium	in	the	Solar	
System,	which	is	biogenic.	
	
-	The	other	Solar	System	planets	have	smaller	
disequilibria	maintained	by	abio[c	processes.	
	
-	For	exoplanets,	thermodynamic	disequilibrium	could	
be	computed	directly	from	observa[ons	without	
assump[ons	about	gas	fluxes.	An	imperfect	tool	but	
one	for	the	toolbox;	key	(dis)equilibria	inform	obs.	
		
-	Kine[c	metrics	are	another	avenue:	means	assessing	
plausibility	of	biogenic	vs.	abio[c	gas	fluxes	



1)	J.	Krissansen-To=on,	D.	Bergsman,	D.	C.	Catling,	On	
detec[ng	biospheres	from	thermodynamic	chemical	
disequilibrium	in	planetary	atmospheres.	Astrobiology	16,	
39-67,	2016.	
	
2)	J.	Krissansen-To=on+,	Is	the	Pale	Blue	Dot	unique?	
Op[mized	photometric	bands	for	iden[fying	Earth-like	
planets.	Astrophy.	J.	817,	31,	2016.	
	
Shameless	plug	for	researcher-level	book,	coming	soon:	
	
D.	C.	Catling	&	J.	F.	Kas[ng	(2017)	Atmospheric	Evolu)on	on	
Inhabited	and	Lifeless	Worlds,	Cambridge	University	Press.	
~500	pages,	~2600	references.		

Some	references:	


