2011 Annual Science Report

Astrobiology Roadmap Objective 4.3 Reports Reporting  |  SEP 2010 – AUG 2011

Project Reports

  • Cosmic Distribution of Chemical Complexity

    The central theme of this project is to explore the possible connections between chemistry in space and the origins of life. We start by tracking the formation and development of chemical complexity in space from simple molecules such as formaldehyde to complex species including amino and nucleic acids. The work focuses on molecular species that are interesting from a biogenic perspective and on understanding their possible roles in the origin of life on habitable worlds. We do this by measuring the spectra and chemistry of analog materials in the laboratory, by remote sensing in small spacecraft and by analysis of extraterrestrial samples returned by spacecraft or that fall to Earth as meteorites. We then use these results to interpret astronomical observations made with ground-based and orbiting telescopes.

    ROADMAP OBJECTIVES: 1.1 2.1 2.2 3.1 3.2 3.4 4.3 7.1 7.2
  • AIRFrame Technical Infrastructure and Visualization Software Evaluation

    We have analyzed over four thousand astrobiology articles from the scientific press, published over ten years to search for clues about their underlying connections. This information can be used to build tools and technologies that guide scientists quickly across vast, interdisciplinary libraries towards the diverse works of most relevance to them.

    ROADMAP OBJECTIVES: 1.1 1.2 2.1 2.2 3.1 3.2 3.3 3.4 4.1 4.2 4.3 5.1 5.2 5.3 6.1 6.2 7.1 7.2
  • Biosignatures in Relevant Microbial Ecosystems

    In this project, PSARC team members explore the isotope ratios, gene sequences, minerals, organic molecules, and other signatures of life in modern environments that have important similarities with early earth conditions, or with life that may be present elsewhere in the solar system and beyond. Many of these environments are “extreme” by human standards and/or have conditions that are at the limit for microbial life on Earth.

    ROADMAP OBJECTIVES: 4.1 4.3 5.1 5.2 5.3 6.1 7.1 7.2
  • Disks and the Origins of Planetary Systems

    This task is concerned with understanding the evolution of complex habitable environments as primitive planetary bodies are forming in a developing protoplanetary disk. The planet formation process begins with the collapse of large molecular clouds into flattened disks. This disk is in many ways an astrochemical “primeval soup” in which cosmically abundant elements are assembled into increasingly complex hydrocarbons and mixed in the dust and gas envelope within the disk. Gravitational attraction among the myriad small bodies leads to planet formation. If the newly formed planet is a suitable distance from its star to support liquid water at the surface, it is in the so called “habitable zone.” The formation process and identification of such life-supporting bodies is the goal of this project.

    ROADMAP OBJECTIVES: 1.1 1.2 2.1 4.3
  • Amino Acid Alphabet Evolution

    We study the question why did life on this planet “choose” a set of 20 standard building blocks (amino acids) for converting genetic instructions into living organisms? The evolutionary step has since been used to evolve organisms of such diversity and adaptability that modern biologists struggle to discover the limits to life-as-we-know-it. Yet the standard amino acid alphabet has remained more or less unchanged for 3 billion years.
    During the past year, we have found that the sub-set of amino acids used by biology exhibits some surprisingly simple, strikingly non-random properties. We are now building on this finding to solidify a new insight into the emergence of life here, and what it can reveal about the distribution and characteristics of life elsewhere in the universe.

    ROADMAP OBJECTIVES: 3.1 3.2 4.1 4.2 4.3 5.2 5.3 6.2 7.1
  • Delivery of Volatiles to Terrestrial Planets

    This project uses computer models and laboratory work to better understand how volatile materials that are important for life, like water, methane, and other organic molecules, are delivered to terrestrial planets. Habitable planets are too small to gravitationally trap these volatiles directly from the gas disk from which they formed, and instead they must be delivered as solids or ices at the time of the planet’s formation, or ongoing as the planet evolves. These trapped volatiles are eventually released to form our oceans and atmosphere. In this task we use computer models of planet formation and migration to understand how the asteroid belt, which is believed to be the source of the Earth’s oceans, was formed. We also use models to understand what happens to meteoritic material as it enters a planet’s atmosphere, especially where it gets deposited in the atmosphere, what happens to it chemically, and how it interacts with the light from the parent star. .

    ROADMAP OBJECTIVES: 1.1 3.1 4.1 4.3
  • Analogue Environment Deployments on the Big Island

    We are using the saddle region on the Big Island of Hawaii, in collaboration with NASA teams and the Canadian Space Agency in order to test technology related to sustainable living on the moon. My group will evaluate the utility of 3-D visualization in robotic navigation, in particular for the ex-ploration of lava tubes.

    ROADMAP OBJECTIVES: 1.1 2.1 4.1 4.3 6.1 6.2 7.1
  • Biosignatures in Ancient Rocks

    The Earth’s Archean and Proterozoic eons offer the best opportunity for investigating a microbial world, such as might be found elsewhere in the cosmos. The ancient record on Earth provides an opportunity to see what geochemical signatures are produced by microbial life and how these signatures are preserved over geologic time. As part of our integrated plan, we will study geochemical, isotopic, and sedimentary signatures of life in order to understand the context in which these biosignatures formed.

    ROADMAP OBJECTIVES: 1.1 3.2 4.1 4.2 4.3 5.1 5.2 5.3 6.1 6.2 7.1 7.2
  • Dynamical Effects on Planetary Habitability

    The Earth’s orbit is near-circular and has changed little since its formation. The Earth is also far enough away from the Sun, that the Sun’s gravity doesn’t seriously affect the Earth’s shape. However, exoplanets have been found to have orbits that are elliptical, rather than circular, and that evolve over time, changing shape and/or moving closer or further to the parent star. Many exoplanets have also been found sufficiently close to the parent star that the star can deform the planet’s shape and transfer energy to the planet in a process called tidal heating. In this VPL task we investigate how interactions between a planet’s orbit, spin axis, and tidal heating can influence our understanding of what makes a planet habitable. Scientific highlights include the finding that tidal effects could be strong enough to cause a planet to overheat and ultimately lose its ocean, that large changes in the direction of the spin-axis of a planet could potentially increase the range of distances from the star in which the planet could remain habitable, and that the Sun may have moved significant distances outward through the Galaxy during its lifetime, changing the rate of at which large bodies have hit the Earth.

    ROADMAP OBJECTIVES: 1.1 1.2 3.1 4.3
  • Biosignatures in Extraterrestrial Settings

    The focus of this project is to explore indicators of life outside of Earth, both within the Solar System and on extrasolar planets. The work includes studies of the chemistry and composition of the Solar System, and the past history of conceivable sites for life in the Solar System. We also look for habitable planets outside the Solar System; work on developing new techniques to find and observe potentially habitable planets; and model the dynamics, evolution and current status of a variety of extrasolar planets.

    ROADMAP OBJECTIVES: 1.1 1.2 2.1 2.2 4.1 4.3 6.2 7.1 7.2
  • Project 4: Impact History in the Earth-Moon System

    The influx of interplanetary debris onto the early Earth represents a major hazard to the emergence of life. Large crater-forming bodies must have been common in the early solar system, as craters are seen on all ancient solid surfaces from Mercury to the moons of the outer planets. Impact craters are few in number on the Earth today only because geologic activity and erosion gradually erase them. The Earth’s nearest neighbor, the Moon, lacks an atmosphere and significant tectonic activity, and therefore retains a record of past impacts. The goal of our research is to reconstruct the bombardment history of the Moon, and by proxy the Earth, to establish when the flux of sterilizing impacts declined sufficiently for the Earth to became habitable.

    ROADMAP OBJECTIVES: 4.3
  • Project 6: The Environment of the Early Earth

    This project involves the development of capabilities that will allow scientists to obtain information about the conditions on early Earth (3.0 to 4.5 billion years ago) by performing chemical analyzes of crystals (minerals) that have survived since that time. When they grow, minerals incorporate trace concentrations of ions and gaseous molecules from the local environment. We are conducting experiments to calibrate the uptake of these “impurities” that we expect to serve as indicators of temperature, moisture, oxidation state and atmosphere composition. To date, our focus has been mainly on zircon (ZrSiO4), but we have recently turned our attention to quartz as well.

    ROADMAP OBJECTIVES: 1.1 4.1 4.3
  • Project 8: Survival of Sugars in Ice/Mineral Mixtures on High Velocity Impact

    Understanding the delivery and preservation of organic molecules in meteoritic material is important to understanding the origin of life on Earth. Though we know that organic molecules are abundant in meteorites, comets, and interplanetary dust particles, few studies have examined how impact processes affect their chemistry and survivability under extreme temperatures and pressures. We are investigating how impact events may change the structure of simple sugars, both alone and when combined with ice mixtures. The experiments will allow us to understand how sugar chemistry is affected by high pressure events and to contrast the survival probabilities of sugars in meteorite and comet impacts. This will lead to a better understanding of how organic molecules are affected during their delivery to Earth. This project leverages expertise in two different NAI nodes, increasing the collaborative interaction among the NAI investigators

    ROADMAP OBJECTIVES: 1.1 3.1 4.1 4.3
  • Galactic Habitable Zone

    Life for certain exists in the Milky Way galaxy, however, understanding if there are certain regions in the galaxy that are more favorable to life is one of the thrusts of astrobiology. This project GHZ is described in terms of the spatial and temporal dimensions of the Galaxy that may favor the devel-opment of complex life. Of particular particular interest to astrobiologists, and to the general public, is whether or not our position in the Galaxy is favourable for the development of complex life.

    ROADMAP OBJECTIVES: 1.1 4.3
  • Stellar Radiative Effects on Planetary Habitability

    Habitable environments are most likely to exist in close proximity to a star, and hence a detailed and comprehensive understanding of the effect of the star on planetary habitability is crucial in the pursuit of an inhabited world. We looked at how the Sun’s brightness would have changed with time. We used models to study the effect of one very big flare on a planet with a carbon dioxide dominated atmosphere, like the early Earth’s, and found that these types of planets are well protected from the UV flux from the flaring star. We have also looked at the first quarter of Kepler data to study flare activity on “ordinary” cool stars, that have not been preselected for their tendency to have large flares. We find that these cool stars fall into two categories: stars that have long duration flares of several hours, but flare less frequently overall, and stars that have short duration flares, but more of them. In future work we will explore the comparative effect on a habitable planet of these two patterns of flaring activity.

    ROADMAP OBJECTIVES: 1.1 1.2 2.1 4.1 4.3 7.2
  • The Dynamical Origin and Evolution of COmetary Reservoirs

    Comet taxonomy can only achieve its full significance if the chemical composition of a particular object is linked to its formation location in the solar nebula. This can only be accomplished through a comprehensive, end-to-end dynamical model of the origin and evolution of the comet reservoirs. Such is the goal of this program. Toward these ends, we have recently shown that most of the Oort cloud was probably captured from the proto-planetary disks of other stars when the Sun was in its birth star cluster.

    ROADMAP OBJECTIVES: 1.1 2.2 3.1 4.3