2010 Annual Science Report

Astrobiology Roadmap Objective 7.2 Reports Reporting  |  SEP 2009 – AUG 2010

Project Reports

  • Detectability of Life

    Detectability of Life investigates the detectability of chemical and biological signatures on the surface of icy worlds, with a focus on spectroscopic techniques, and on spectral bands that are not in some way connected to photosynthesis.Detectability of life investigation has three major objectives: Detection of Life in the Laboratory, Detection of Life in the Field, and Detection of Life from Orbit.

    ROADMAP OBJECTIVES: 1.2 2.1 2.2 4.1 5.3 6.1 6.2 7.1 7.2
  • Biomineralization

    Minerals formed by biological systems such as bones, teeth, and seashells can be used to identify the organism from which they came. Thus these mineral structures are unique biosignatures. Our efforts are focused on trying to identify the key underlying factors that are responsible for the subtle differences in the structure of these biominerals imparted by the organic biological components of the organism. We therefore study the interface between the mineral and the organic components with a particular focus on very early events in the mineral growth process.

    ROADMAP OBJECTIVES: 7.1 7.2
  • AIRFrame Technical Infrastructure and Visualization Software Evaluation

    The Astrobiology Integrative Research Framework (AIRFrame) analyzes published and unpublished documents to identify and visualize implicit relationships between astrobiology’s diverse constituent fields. The main goal of the AIRFrame project is to allow researchers and the public to discover and navigate across related information from different disciplines.

    ROADMAP OBJECTIVES: 1.1 1.2 2.1 2.2 3.1 3.2 3.3 3.4 4.1 4.2 4.3 5.1 5.2 5.3 6.1 6.2 7.1 7.2
  • Biosignatures in Ancient Rocks

    This team of geologists, geochemists, paleontologists and biologists seeks signs of early life in ancient rocks from Earth. Working mostly on that part of Earth history before the advent of skeletons and other preservable hard parts in organisms, our group focuses on geochemical traces of life and their activities. We also investigate how life has influenced, and has been influenced by changes in the surface environment, including the establishment of an oxygen-rich environment and the initiation of extreme climate states including global glaciations. For this we use a combination of observations from modern analogous environments, studies of ancient rocks, and numerical modeling.

    ROADMAP OBJECTIVES: 1.1 3.2 4.1 4.2 4.3 5.1 5.2 5.3 6.1 6.2 7.1 7.2
  • AbGradCon 2010

    The Astrobiology Graduate Student conference is a conference organized by astrobiology graduate students for astrobiology grad students. It provides a comfortable peer forum in which to communicate and discuss research progress and ideas.

    ROADMAP OBJECTIVES: 1.1 1.2 2.1 2.2 3.1 3.2 3.3 3.4 4.1 4.2 4.3 5.1 5.2 5.3 6.1 6.2 7.1 7.2
  • Cosmic Distribution of Chemical Complexity

    This project is aimed to improve our understanding of the connection between chemistry in space and the origin of life on Earth, and its possibility on other worlds. Our approach is to trace the formation and development of chemical complexity in space, with particular emphasis on understanding the evolution from simple to complex species. The work focuses upon molecular species that are interesting from a biogenic perspective and also upon understanding their possible roles in the origin of life on habitable worlds. We do this by first measuring the spectra and chemistry of materials under simulated space conditions in the laboratory. We then use these results to interpret astronomical observations made with ground-based and orbiting telescopes. We also carry out experiments on simulated extraterrestrial materials to analyze extraterrestrial samples returned by NASA missions or that fall to Earth in meteorites.

    ROADMAP OBJECTIVES: 1.1 2.1 2.2 3.1 3.2 3.4 4.3 7.1 7.2
  • Habitability of Icy Worlds

    Habitability of Icy Worlds investigates the habitability of liquid water environments in icy worlds, with a focus on what processes may give rise to life, what processes may sustain life, and what processes may deliver that life to the surface. Habitability of Icy Worlds investigation has three major objectives. Objective 1, Seafloor Processes, explores conditions that might be conducive to originating and supporting life in icy world interiors. Objective 2, Ocean Processes, investigates the formation of prebiotic cell membranes under simulated deep-ocean conditions, and Objective 3, Ice Shell Processes, investigates astrobiological aspects of ice shell evolution.

    ROADMAP OBJECTIVES: 1.1 2.1 2.2 3.1 3.2 3.3 3.4 4.1 5.1 5.3 6.1 6.2 7.1 7.2
  • Amino Acid Alphabet Evolution

    A standard “alphabet” of just 20 amino acids builds the proteins that interact to form metabolism of all life on Earth (rather like the English of 26 letters can be linked into words that interact in sentences and paragraphs to produce meaningful writing). However, considerable research from many scientific disciplines points to the idea that many other amino acids are made by non-biological processes throughout the universe. A natural question is why did life on our planet “choose” the members of its standard alphabet?

    Our project seeks to gather and organize the diverse information that describes these non-biological amino acids, to understand their properties and potential for making proteins and thus to understand better whether the biology that we know is a clever, predictable solution to making biology – or just one of countless possible solutions that may exist elsewhere.

    ROADMAP OBJECTIVES: 1.1 3.1 3.2 3.4 4.1 4.3 6.2 7.1 7.2
  • Biosignatures in Relevant Microbial Ecosystems

    In this project, PSARC team members explore the isotope ratios, gene sequences, minerals, organic molecules, and other signatures of life in modern environments that have important similarities with early earth conditions, or with life that may be present elsewhere in the solar system and beyond. Many of these environments are “extreme” by human standards and/or have conditions that are at the limit for microbial life on Earth.

    ROADMAP OBJECTIVES: 4.1 4.3 5.1 5.2 5.3 6.1 7.1 7.2
  • Path to Flight

    Our technology investigation, a Path to Flight for astrobiology, utilizes instrumentation built with non-NAI funding to carry out three science investigations namely habitability, survivability and detectability of life. The search for life requires instruments and techniques that can detect biosignatures from orbit and in-situ under harsh conditions. Advancing this capacity is the focus of our Technology Investigation.

    ROADMAP OBJECTIVES: 1.1 1.2 2.1 2.2 3.1 3.2 7.1 7.2
  • Developing New Biosignatures

    The development and experimental testing of potential indicators of life is essential for providing a critical scientific basis for the exploration of life in the cosmos. In microbial cultures, potential new biosignatures can be found among isotopic ratios, elemental compositions, and chemical changes to the growth media. Additionally, life can be detected and investigated in natural systems by directing cutting-edge instrumentation towards the investigation of microbial cells, microbial fossils, and microbial geochemical products. Our efforts are focused on creating innovative approaches for the analyses of cells and other organic material, finding ways in which metal abundances and isotope systems reflect life, and developing creative approaches for using environmental DNA to study present and past life.

    ROADMAP OBJECTIVES: 2.1 2.2 3.1 3.2 3.4 4.1 5.2 5.3 7.1 7.2
  • Bioastronomy 2007 Meeting Proceedings

    This is the published volume of material from an astrobiology meeting hosted by our lead team in 2007 in San Juan Puerto Riceo. The book includes 60 papers covering the breadth of astrobiology, and developed a new on-line astrobiology glossary.

    ROADMAP OBJECTIVES: 1.1 1.2 2.1 2.2 3.1 3.2 3.3 3.4 4.1 4.2 4.3 5.1 5.2 5.3 6.1 6.2 7.1 7.2
  • Survivability of Icy Worlds

    As part of our Survivability of icy Worlds investigation, we examine the similarities and differences between the abiotic chemistry of planetary ices irradiated with ultraviolet photons (UV), electrons, and ions, and the chemistry of biomolecules exposed to similar conditions. Can the chemical products resulting from these two scenarios be distinguished? Can viable microbes persist after exposure to such conditions? These are motivating questions for our investigation.

    ROADMAP OBJECTIVES: 2.2 3.2 5.1 5.3 7.1 7.2
  • Minerals to Enzymes: The Path to CO Dehydrogenase/Acetyl – CoA Synthase

    The relationship between structure and reactivity of iron-sulfur minerals and the active sites of iron-sulfur enzymes is too strong to be coincidental. We and others have proposed that the emergence and genesis of iron-sulfur cluster enzymes occurred by a stepwise process in which mineral motifs were first nested in simple organic polymers and then in response to selective pressure evolved specific gene encoded protein nest that confer high specific enzyme activities. We are examining this hypothesis through nesting NiFeS motifs in a variety of organic nest and examining the structural determinants of reactivity.

    ROADMAP OBJECTIVES: 3.1 3.2 3.3 3.4 7.1 7.2
  • Project 1D: Dolomite Precipitation From Solutions Containing Agar or Carboxymethyl Cellulose, Synthetic Analogs for Extracellular Polymeric Substances (EPS)

    A major paradox in the study of ancient sedimentary rocks is that dolomite is ubiquitous in the rock record, and yet is nearly impossible to form dolomite in the laboratory. A common proposal to this dilemma is that microorganisms, especially anaerobic microorganisms, can overcome kinetic barriers to facilitate dolomite precipitation, although their specific role in dolomite formation and nucleation is still unclear. Our experiments demonstrate that disordered dolomite can be synthesized abiotically from solutions containing agar or carboxymethyl cellulose at room temperature. It is now recognized that dehydration / desolvation of hydrated surface Mg(II) is a critical kinetic barrier to dolomite nucleation. Our work shows that dissolving a low dielectric constant solvent in water will lower the dielectric constant of the solution, and thus can reduce the solvation energies of dissolved cations. Tis work therefore provides insight into the mechanisms by which microorganisms may catalyze dolomite formation.

    ROADMAP OBJECTIVES: 7.1 7.2
  • PHL 278: A Gateway Course for a Minor in Astrobiology

    We have recently developed obtained Montana Board of Regents for an undergraduate minor in Astrobiology at Montana State University. The Minor includes courses in Earth Sciences, Physics, Astronomy, Microbiology, Ecology, Chemistry, and Philosophy. Two new courses have been developed as part of the minor, one of which is a gateway or introductory course examines the defining characteristics of life on earth as well as the challenges of a science that studies life and its origin. The other course which will be offered fall 2011 is the capstone course for the minor which will delved into the science of Astrobiology in more detail and targeted for Juniors and Seniors that have fulfilled the majority of the requisite course requirements for the curriculum.

    ROADMAP OBJECTIVES: 1.1 1.2 2.1 2.2 3.1 3.2 3.3 3.4 4.1 4.2 4.3 5.1 5.2 5.3 6.1 6.2 7.1 7.2
  • Project 6: Application of Laboratory Experimentation to Flight Instrument Testing

    The Arctic Mars Analogue Svalbard Expedition (AMASE) tests instruments, procedures and protocols to answer critical science questions on Mars. NAI sponsored researchers undertake science tasks alongside scientists developing instruments for Mars missions (MSL and ExoMars).

    ROADMAP OBJECTIVES: 7.2
  • Earth as an Extrasolar Planet

    Earth is the only known planet that can support life on its surface, and serves as our only example of what a habitable planet looks like. This task uses distant observations of the Earth taken from spacecraft combined with a sophisticated computer model of the Earth to understand the appearance and characteristics of a habitable planet. With our model, we can generate accurate simulations of the Earth’s brightness, color and spectrum, when viewed at different time-intervals, and from different vantage points. We are using these simulations to understand how we might detect signs of an ocean on a distant planet, and to understand the limitations of surface temperature measurements when a planet has significant cloud cover.

    ROADMAP OBJECTIVES: 1.2 7.2
  • Computational Astrobiology Summer School

    The Computational Astrobiology Summer School (CASS) is an excellent opportunity for graduate students in computer science and related areas to learn about astrobiology, and to carry out substantial projects related to the field.

    The two-week on-site part of the program is an intensive introduction to the field of astrobiology. NASA Astrobiology Institute scientists present their work, and the group discusses ways in which computational tools (e.g. models, simulations, data processing applications, sensor networks, etc.) could improve astrobiology research. Also during this time, participants define their projects, with the help of the participating NAI researchers. On returning to their home institutions, participants work on their projects, under the supervision of a mentor, with the goal of presenting their completed projects at an astrobiology-related conference the following year.

    ROADMAP OBJECTIVES: 1.1 1.2 2.1 2.2 3.1 3.2 3.3 3.4 4.1 4.2 4.3 5.1 5.2 5.3 6.1 6.2 7.1 7.2
  • Astrophysical Controls on the Elements of Life, Task 7: Update Catalog of Elemental Ratios in Nearby Stars

    We are creating the first 3D maps of the elements for stars within 1000 light-years of the Sun, building upon the Habitable Star Catalog produced by Maggie Turnbull and Jill Tarter in 2003. We currently have abundance levels of bioessential elements for about 800 of the 17,000 stars listed in the Habitable Star Catalog. This project employs 2 graduate students (resulting in 1 PhD and 1 masters degree) and 1 undergraduate student. When this project is completed, our publicly available 3D maps will enable discovery of directions, or regions, in space where stars have abundance patterns more favorable to producing habitable worlds.

    ROADMAP OBJECTIVES: 1.1 7.2
  • Rationalized Chemical Surface Modifications

    Using biological examples such as nitrogen fixation by nitrogenase, hydrogen evolution and uptake by hydrogenases, and reversible CO/CO2 conversion by CO dehydrogenase, we began to study the effect of heterometal (Mo, V, Ni) substitution in iron-sulfur minerals and particles. We have successfully bound molybdenum sulfide on pyrite mineral surfaces and exploring the synthetic feasibility of doping Ni into freshly precipitated FeS particles. Preliminary reactivity studies indicated higher yields in formation of ammonia from nitrogen oxides at hydrothermal conditions relative to the pure iron-sulfur systems.

    ROADMAP OBJECTIVES: 3.1 3.2 3.3 7.1 7.2
  • Modelling Planetary Albedo & Biomarkers in Rocky Planets’/moons Spectra

    The recent discovery of several potentially habitable Super-Earths (planets up to about 10x the mass of our own Earth that could be rocky) and the first nearby super-Earth planets around the habitable Zone of Gl581, has proven that we can already detect potentially habitable planets and makes this research extremely relevant. We model atmospheric spectral signatures, including biosignatures, of known and hypothetical exoplanets that are potentially habitable.
    The atmospheric characterization of such Super-Earths and potentially habitable Moons, will allow us to explore the condition on the first detectable rocky exoplanets and potentially characterize the first detectable Habitable Exoplanet.

    ROADMAP OBJECTIVES: 1.1 1.2 4.1 4.2 6.2 7.2
  • Deep (Sediment-Buried Basement) Biosphere

    The ocean crust comprises the largest aquifer on earth and there is increasing evidence that supports the presence of actively growing microbial communities within basaltic porewaters.

    Advanced Integrated Ocean Drilling Program (IODP) circulation obviation retrofit kit (CORK) observatories provide a unique opportunity to sample these otherwise inaccessible deep subseafloor habitats at the basalt-sediment transition zone. Aging porewaters remain isolated within this sediment-buried upper oceanic basement, subjected to increasing temperatures and pressures as plates move away from spreading ridges.

    ROADMAP OBJECTIVES: 4.1 4.2 5.2 5.3 6.1 6.2 7.1 7.2
  • Structure, Reactivity, and Biosynthesis of Cataylic Iron-Sulfur Clusters

    We are examining the biosynthesis of complex iron-sulfur cluster to determine the specific chemistry associated with modifying iron-sulfur motifs in biology for different functions. We then relate the chemistry associated with these modifying reactions to reactions that could potentially modify iron-sulfur mineral motifs in the early non-living Earth to promote analogous reactivity.

    ROADMAP OBJECTIVES: 3.1 3.2 3.3 3.4 4.1 7.1 7.2
  • Postdoctoral Fellow Report: Mark Claire

    I am interested in how biological gases affect the atmosphere of Earth (and possibly other planets.) Specifically, I use computer models to investigate how biogenic sulfur gases might build up in a planetary atmosphere, and if this would lead to observable traces in Earth’s rock record or in the atmospheres of planets around other stars. I’ve also worked on how perchlorate formed in Earth’s Atacama desert as an attempt to explain how perchlorate formed on Mars

    ROADMAP OBJECTIVES: 1.1 1.2 2.1 4.1 7.2
  • Postdoctoral Fellow Report: Steven Mielke

    This project seeks to resolve the long-wavelength limit of oxygenic photosynthesis in order to constrain the range of extrasolar environments in which spectral signatures of biogenic oxygen might be found, and thereby guide future planet detecting and characterizing observatories.

    ROADMAP OBJECTIVES: 5.1 6.1 6.2 7.2
  • Subglacial Methanogenesis and Implications for Planetary Carbon Cycling

    Methanogens are thought to be among the earliest emerging life forms. Today, the distribution of methanogens is narrowly constrained, due in part to the energetics of the reactions which support this functional class of organism (namely carbon dioxide reduction with hydrogen and acetate fermentation). Methanogens utilize a number of metalloenzymes that have active site clusters comprised of a unique array of metals. The goals of this project are 1) identifying a suite of biomarkers indicative of biological CH4 production 2). quantifying the flux of CH~4~ from sub-ice systems and 3). developing an understanding how life thrives at the thermodynamic limits of life. This project represents a unique extension of the ABRC and bridges the research goals of several nodes, namely the JPL-Icy Worlds team and the ASU-Follow the Elements team.

    ROADMAP OBJECTIVES: 2.1 5.1 5.2 5.3 7.1 7.2
  • NIR Spectroscopic Observations of Circumstellar Disks Around Young Stars

    Using the NIRSPEC instrument on the Keck telescope in collaboration with Dr. Michael Mumma of NASA GSFC and Dr. Geoffrey Blake of CalTech, we made the first discovery of OH ro-vibrational emission in the L band (3 – 4 μm) in the planet-forming (1-10 AU) region of disks around Herbig Ae stars (Mandell et al. 2008). OH is a sensitive tracer of the UV and IR radiation field and the dissociation and recombination of H2 and H2O, and combined with a strong upper limit for H2O emission these observations provide a sensitive constraint on the formation and destruction rate of water and the vertical height of the dust absorbing layer. Line strengths are characteristic of temperatures of ~600K, and the location is constrained to beyond ~1 AU by the spectral line widths, suggesting we are observing the warm molecular layer beyond the inner dust rim.

    ROADMAP OBJECTIVES: 1.1 1.2 3.1 7.2
  • Project 3C: Iron Isotope Biosignatures: Laboratory Studies and Modern Environments

    Ancient rocks often carry chemical and isotopic signatures of ancient microbiological processes. However, fluids important in the generation of these signatures are lost upon lithification. Experimental studies in geochemical systems analogous to ancient rock precursors are therefore critical to gain insight into the biogeochemical processes responsible for generating unique chemical or isotopic compositions in ancient rocks. New laboratory studies were conducted to extend our recent work on Fe isotope fractionation during microbial dissimilatory iron reduction (DIR) in the presence of dissolved silica, which was likely abundant in Precambrian oceans. Iron isotope fractionation was investigated during microbial reduction of an amorphous iron oxide-silica coprecipitate in high-silica, low-sulfate artificial Archean seawater to determine if such conditions alter the extent of reduction, or the isotopic fractionations relative to those previously observed in simple systems. These new results show that, relative to simiple systems, significantly larger quantities of low-isotopically-light reduced iron were produced during reduction of the Fe-Si coprecipitate. These findings provide strong support for DIR as a mechanism for producing Fe isotope variations observed in Neoarchean and Paleoproterozoic marine sedimentary rocks.

    ROADMAP OBJECTIVES: 2.1 4.1 5.2 6.1 7.1 7.2
  • Stellar Effects on Planetary Habitability

    Habitable environments are most likely to exist in close proximity to a star, and hence a detailed and comprehensive understanding of the effect of the star on planetary habitability is crucial in the pursuit of an inhabited world. We looked at how the Sun’s brightness would have changed with time. We also model how stars with different masses, temperatures and flare activity affect the habitability of planets, including looking at the effect of a very big flare on a planet’s atmosphere and surface. We find that a planet with an atmosphere like Earth orbiting around a cool red star is fairly well protected from UV radiation, but particles associated with the flare can produce damaging chemistry in the planetary atmosphere that severely depletes the planet’s ozone layer.

    ROADMAP OBJECTIVES: 1.1 1.2 2.1 4.1 4.3 5.3 6.1 7.2
  • Surface Chemistry on Iron-Sulfur Minerals

    Progress has been made in defining competitive abiotic pathways for reducing nitrogen compounds to ammonia from nitrogen oxides relative to the dinitrogen. Using pyrite mineral surfaces and freshly precipitated Fe-S particles, we showed that under hydrothermal conditions nitrite (NO2-), nitrate (NO3-), as well as nitric oxide (NO) can be converted to ammonia to comparable yields than starting from dinitrogen (N2). Formation of ammonia or ammonium ion in aqueous solution is considered as an essential step toward creating amino acids that are key building blocks of life.

    ROADMAP OBJECTIVES: 3.1 3.2 3.3 7.1 7.2
  • Virtual Catalysis From Molecular Beam Scattering

    Molecular beam/surface scattering experiments provide a controlled environment for modeling abiotic processes at the interface of lytho- and atmosphere. Specifically, it has been proposed that exposed rock surfaces may have played a role in modifying activated atmospheric molecules in the presence of UV radiation toward the building blocks of life. We have found that extended exposure of pyrite mineral surfaces to hydrogen atoms creates a reduced iron surface. The reduced state and the modified geometric structure of the surface iron atoms were confirmed by X-ray spectroscopy. Furthermore, this modified pyrite surface shows remarkable chemical reactivity in converting the hyperthermal beam of N2 to ammonia.

    ROADMAP OBJECTIVES: 3.1 3.2 3.3 7.1 7.2
  • Thermodynamic Efficiency of Electron-Transfer Reactions in the Chlorophyll D-Containing Cyanobacterium, Acharyochloris Marina

    Photosynthesis produces planetary-scale biosignatures – atmospheric oxygen and the color of photosynthetic pigments. It is expected to be successful on habitable extrasolar planets as well, due to the ubiquity of starlight as an energy source. How might photosynthetic pigments adapt to alternative environments? Could oxygenic photosynthesis occur at much longer wavelengths than the red? This project is approaching these questions by using a laser technique to study the recently discovered cyanobacterium, Acaryochloris marina, which uses the chlorophyll d pigment to perform its photosynthesis at wavelengths longer than those used by the much more prevalent chlorophyll a. Whether A. marina is operating more efficiently or less than Chl a-utilizing organisms will indicate what wavelengths are the ultimate limit for oxygenic photosynthesis.

    ROADMAP OBJECTIVES: 3.2 4.2 5.1 5.3 6.2 7.2
  • Project 4B: Development of Laser Ablation-Miniature Mass Spectrometer (LA-MMS) for Geochronology and Geochemistry of Martian Rocks

    Our goal is to develop a breadboard instrument for isotopic analysis of solids and age dating of different rocks based on Rb-Sr radiometric technique. This is based on the methodology of laser ablation-miniature mass spectrometer (LA-MMS). It performs the mass spectral and isotopic measurements of the laser ablated vapors from solids using the miniature mass spectrometer (MMS) and the modified CCD based array detector for the direct and simultaneous measurement of different mass ions. The approach has been demonstrated at the Jet Propulsion Laboratory by the chemical and isotopic analysis of gas and solid samples. The breadboard version of the above instrument can be miniaturized to meet the requirements of a rover based spacecraft instrument for applications to various NASA missions.

    ROADMAP OBJECTIVES: 2.1 7.2
  • X-Ray Characterization of Modified Fe-S Mineral Surfaces

    High energy X-ray radiations generated by tunable synchrotron lightsources were used to characterize both the location of the electrons and the atomic centers in modified Fe-S minerals and particles. We have exploited the complementary information content of three different detections techniques in both soft and hard X-ray energy range. We confirmed the formation of a reduced pyrite structure from hydrogen atom exposure experiments. The formation of a reduced pyrite surface is relevant to small molecule activation processes of abiotic molecules toward formation of more complex molecules, such as amino and nucleic acids.

    ROADMAP OBJECTIVES: 3.1 3.2 3.3 7.1 7.2
  • The VPL Life Modules

    The Life Modules of the VPL are concerned with the modeling of biosphere processes for coupling with the VPL’s atmospheric and planetary models. These coupled models enable simulation of the impact of biogenic gases on atmospheric composition, of biota on the surface energy balance, and of the detectability of these in planetary spectra. The Life Modules team has engaged in previous work coupling 1D models in the VPL’s suite of planetary models, and current work now focuses on biosphere models coupled to 3D general circulation models (GCMs). Current project areas are: 1) development of a model of land-based ecosystem dynamics suitable for coupling with GCMs and generalizable for alternative planetary parameters, and 2) coupling of an ocean biogeochemistry model to GCMs.

    ROADMAP OBJECTIVES: 1.2 6.1 6.2 7.2
  • Project 5C: Fluid-Mineral Fractionation of Mg Isotopes and Tracing the Origin of Sulfate Minerals

    We are developing an experimental program to characterize the Mg isotope fractionation between fluids and minerals in order to use the Mg isotope system to characterize the paleoenvironmental conditions of ancient terrestrial rocks and samples from Mars. Our initial work has focused on Mg isotope fractionation between aqueous Mg and epsomite. Magnesium sulfate is present on the surface of Mars, where, for example, up to 36 wt. % sulfate has been found in some outcrops on the Martian surface, of which Mg-sulfate is the most abundant (Clark et al., 2005). Sulfates are a major water reservoir for the Martian surface and thus it is inferred that there was a period of aqueous alteration on Mars (e.g., Wang et al., 2008). Knowledge of the controls on Mg isotope fractionation in the system fluid and Mg sulfate will allow us to ultimately characterize the evaporation rates and Mg fluxes that occurred during one of the wettest periods in Mars History.

    ROADMAP OBJECTIVES: 2.1 4.1 7.1 7.2
  • Stoichiometry of Life, Task 2a: Field Studies – Yellowstone National Park

    Field work and subsequent laboratory analysis is an integral part of following the elements. One of our field areas is the hot spring ecosystems of Yellowstone, which are dominated by microbes, and where reactions between water and rock generate diverse chemical compositions.
    These natural laboratories provide numerous opportunities to test our ideas about how microbes respond to different geochemical supplies of elements. Summer field work and lab work the rest of the year includes characterizing the natural systems, and controlled experiments on the effects of changing nutrient and metal concentrations (done so as to not impact the natural features!).

    ROADMAP OBJECTIVES: 5.1 5.2 5.3 6.1 6.2 7.2
  • Stoichiometry of Life, Task 4: Biogeochemical Impacts on Planetary Atmospheres

    Oxygenation of Earth’s early atmosphere must have involved an efficient mode of carbon burial. In the modern ocean, carbon export of primary production is dominated by fecal pellets and aggregates produced by the animal grazer community. But during most of Earth history the oceans were dominated by unicellular, bacteria-like organisms (prokaryotes) causing a substantially altered biogeochemistry. The NASA Ocean Biogechemical Model (NOBM) is applied using cyanobacteria (blue-green algae) as the only photosynthetic group in the oceans. The analyses showed that the early Earth ocean had 19% less primary production and 35% more nitrate due to slower growth by the cyanobacteria, and reduced nutrient uptake efficiency relative to modern phytoplankton Additionally there was 8% more total carbon in the oceans as a result of higher atmospheric pCO2. We plan to optimize this early Proterozoic ocean model in combination with a 1 D model to account for changes in aggregate formation and sinking speed in response to varying nutrients.

    ROADMAP OBJECTIVES: 1.1 4.1 4.2 5.2 6.1 7.2
  • Quantification of the Disciplinary Roots of Astrobiology

    While astrobiology is clearly an interdisciplinary science, this project seeks to address the question of how interdisciplinary it is. We are reviewing published works across a broad range of scholarly databases, comparing disciplinary indicators such as subject terms, journal titles and author affiliations, and creating a computational model to identify and compare the makeup of astrobiological research literature in terms of the proportion of work that come from constituent fields.

    ROADMAP OBJECTIVES: 1.1 1.2 2.1 2.2 3.1 3.2 3.3 3.4 4.1 4.2 4.3 5.1 5.2 5.3 6.1 6.2 7.1 7.2