2010 Annual Science Report

Astrobiology Roadmap Objective 2.1 Reports Reporting  |  SEP 2009 – AUG 2010

Project Reports

  • Detectability of Life

    Detectability of Life investigates the detectability of chemical and biological signatures on the surface of icy worlds, with a focus on spectroscopic techniques, and on spectral bands that are not in some way connected to photosynthesis.Detectability of life investigation has three major objectives: Detection of Life in the Laboratory, Detection of Life in the Field, and Detection of Life from Orbit.

    ROADMAP OBJECTIVES: 1.2 2.1 2.2 4.1 5.3 6.1 6.2 7.1 7.2
  • Cosmic Distribution of Chemical Complexity

    This project is aimed to improve our understanding of the connection between chemistry in space and the origin of life on Earth, and its possibility on other worlds. Our approach is to trace the formation and development of chemical complexity in space, with particular emphasis on understanding the evolution from simple to complex species. The work focuses upon molecular species that are interesting from a biogenic perspective and also upon understanding their possible roles in the origin of life on habitable worlds. We do this by first measuring the spectra and chemistry of materials under simulated space conditions in the laboratory. We then use these results to interpret astronomical observations made with ground-based and orbiting telescopes. We also carry out experiments on simulated extraterrestrial materials to analyze extraterrestrial samples returned by NASA missions or that fall to Earth in meteorites.

    ROADMAP OBJECTIVES: 1.1 2.1 2.2 3.1 3.2 3.4 4.3 7.1 7.2
  • AbGradCon 2010

    The Astrobiology Graduate Student conference is a conference organized by astrobiology graduate students for astrobiology grad students. It provides a comfortable peer forum in which to communicate and discuss research progress and ideas.

    ROADMAP OBJECTIVES: 1.1 1.2 2.1 2.2 3.1 3.2 3.3 3.4 4.1 4.2 4.3 5.1 5.2 5.3 6.1 6.2 7.1 7.2
  • AIRFrame Technical Infrastructure and Visualization Software Evaluation

    The Astrobiology Integrative Research Framework (AIRFrame) analyzes published and unpublished documents to identify and visualize implicit relationships between astrobiology’s diverse constituent fields. The main goal of the AIRFrame project is to allow researchers and the public to discover and navigate across related information from different disciplines.

    ROADMAP OBJECTIVES: 1.1 1.2 2.1 2.2 3.1 3.2 3.3 3.4 4.1 4.2 4.3 5.1 5.2 5.3 6.1 6.2 7.1 7.2
  • Astrobiological Exploration of Mars

    Astrobiological research informs many NASA missions and especially those concerned with exploring our near neighbor Mars. MIT team members have been making notable contributions to the Mars Exploration Rovers and Mars Science Laboratory missions.

  • Disks and the Origins of Planetary Systems

    This task is concerned with understanding the evolution of complexity as primitive planetary bodies form in habitable zones. The planet formation process begins with fragmentation of large molecular clouds into flattened protoplanetary disks. This disk is in many ways an astrochemical “primeval soup” in which cosmically abundant elements are assembled into increasingly complex hydrocarbons and mixed in the dust and gas envelope within the disk. Gravitational attraction among the myriad small bodies leads to planet formation. If the newly formed planet is a suitable distance from its star to support liquid water at the surface, it is in the so-called “habitable zone.” The formation process and identification of such life-supporting bodies is the goal of this project.

    ROADMAP OBJECTIVES: 1.1 1.2 2.1 4.3
  • Advancing Techniques for in Situ Analysis of Complex Organics

    Our research in laser mass spectrometry is part of the overall program of the Goddard Center for Astrobiology to investigate the origin and evolution of organics in planetary systems. Laser mass spectrometry is a technique that is used to determine the chemical composition of sample materials such as rocks, dust, ice, meteorites in the lab. It also may be miniaturized so it could fit on a robotic spacecraft to an asteroid, a comet, or even Mars. On such a mission it could be used to discover any organic compounds preserved there, which in turn would give us insight into how Earth got its starting inventory of organic compounds that were necessary for life. The technique uses a high-intensity laser to “zap” atoms and molecules directly off the surface of the sample. The mass spectrometer instantly captures these particles and provides data that allow us to determine their molecular weights, and therefore their chemical composition. Our recent work has been to understand the different kinds of spectra one obtains when analyzing complex samples that are analogs of Mars and other planetary bodies, such as phyllosilicate-bearing rocks that have been identified on Mars and may indicate past conditions where life could have developed in the presence of water. We also have been improving the instrument to better detect certain kinds of organic compounds in such complex rocks, such as to selectively ionize certain hydrocarbons and simplify data analysis, and to create chemical maps of the sample surface.

  • Habitability of Icy Worlds

    Habitability of Icy Worlds investigates the habitability of liquid water environments in icy worlds, with a focus on what processes may give rise to life, what processes may sustain life, and what processes may deliver that life to the surface. Habitability of Icy Worlds investigation has three major objectives. Objective 1, Seafloor Processes, explores conditions that might be conducive to originating and supporting life in icy world interiors. Objective 2, Ocean Processes, investigates the formation of prebiotic cell membranes under simulated deep-ocean conditions, and Objective 3, Ice Shell Processes, investigates astrobiological aspects of ice shell evolution.

    ROADMAP OBJECTIVES: 1.1 2.1 2.2 3.1 3.2 3.3 3.4 4.1 5.1 5.3 6.1 6.2 7.1 7.2
  • Biosignatures in Extraterrestrial Settings

    The team will investigate the abundance of sulfur gases and elucidate how these gases can be expected to evolve with time on young terrestrial planets. They will continue studies of planet formation in the presence of migration and model radial transport of volatiles in young planetary systems, and will be involved with searches for M star planetary companions and planets around K-giant stars.

    ROADMAP OBJECTIVES: 1.1 1.2 2.1 2.2 4.1 4.3 6.2 7.1
  • Mineralogical Traces of Early Habitable Environments

    The goal of our work is to discern the habitability (potential to support life) of ancient Martian environments, with an emphasis on understanding which environments could have supported more life than others. This information will help to guide the selection of sites on the Martian surface for future missions designed to seek direct evidence of life. Our approach has two main parts: 1. We will use the presence of specific minerals or groups of minerals – an analysis that can be performed robotically on Mars — to constrain the chemical and physical conditions of the ancient environments in which they formed. 2. We will work to understand how the ability of environments on Earth to support more or less biomass depends on these same physical and chemical conditions.

  • Path to Flight

    Our technology investigation, a Path to Flight for astrobiology, utilizes instrumentation built with non-NAI funding to carry out three science investigations namely habitability, survivability and detectability of life. The search for life requires instruments and techniques that can detect biosignatures from orbit and in-situ under harsh conditions. Advancing this capacity is the focus of our Technology Investigation.

    ROADMAP OBJECTIVES: 1.1 1.2 2.1 2.2 3.1 3.2 7.1 7.2
  • Analogue Environment Deployments on the Big Island

    The Big Island of Hawaii has several sites that are excellent analogs for areas on the Moon and/or Mars. We are currently planning two analog deployments for 2012: one to test technology related to in-situ resource utilization, and one to investigate human factors in long-term space exploration. The focus this year is on site selection and research planning.

  • Developing New Biosignatures

    The development and experimental testing of potential indicators of life is essential for providing a critical scientific basis for the exploration of life in the cosmos. In microbial cultures, potential new biosignatures can be found among isotopic ratios, elemental compositions, and chemical changes to the growth media. Additionally, life can be detected and investigated in natural systems by directing cutting-edge instrumentation towards the investigation of microbial cells, microbial fossils, and microbial geochemical products. Our efforts are focused on creating innovative approaches for the analyses of cells and other organic material, finding ways in which metal abundances and isotope systems reflect life, and developing creative approaches for using environmental DNA to study present and past life.

    ROADMAP OBJECTIVES: 2.1 2.2 3.1 3.2 3.4 4.1 5.2 5.3 7.1 7.2
  • Bioastronomy 2007 Meeting Proceedings

    This is the published volume of material from an astrobiology meeting hosted by our lead team in 2007 in San Juan Puerto Riceo. The book includes 60 papers covering the breadth of astrobiology, and developed a new on-line astrobiology glossary.

    ROADMAP OBJECTIVES: 1.1 1.2 2.1 2.2 3.1 3.2 3.3 3.4 4.1 4.2 4.3 5.1 5.2 5.3 6.1 6.2 7.1 7.2
  • Project 2A: Chemolithotrophic Microbial Oxidation of Basalt Glass

    Ferrous iron (Fe(II)) can serve as an energy source for a wide variety of chemolithotrophic microorganisms (organisms that gain energy from metabolism of inorganic compounds). Fe(II) oxidation may have played a role in past (and possibly, present) life on Mars, whose crust is rich in Fe(II)-bearing silicate minerals (e.g. ultramafic basalt rocks). The goal of this project is to determine whether an established chemolithoautotrophic Fe(II)-oxidizing, nitrate-reducing culture can grow by oxidation of Fe(II) in basalt glass. Experiments showed that the culture is able to oxidize a significant portion (approximately 1%) of the Fe(II) content of fresh basalt glass from Kilauea, a shield volcano in Hawaii that represents an analog for ancient volcanic activity on Mars. The ratio of Fe(II) oxidized to nitrate reduced was consistent with the expected 1:5 stoichiometry, suggesting that the culture oxidized Fe(II) with nitrate in a manner analogous to its metabolism of other (e.g. aqueous) Fe(II) forms.

    ROADMAP OBJECTIVES: 2.1 6.2 7.1
  • Project 5: Vistas of Early Mars: In Preparation for Sample Return

    To understand the history of life in the solar system requires knowledge of how hydrous minerals form on planetary surfaces, and the role these minerals play in the development of potential life forms. One hydrous mineral found on Earth and inferred from in situ measurements on Mars, is the mineral Jarosite, KFe3(SO4)2(OH)6. We are investigating whether radiometric ages, specifically 40Ar/39Ar ages on jarosite can be interpreted to accurately record climate change events on Mars. This project not only requires understanding the conditions required for jarosite formation and preservation on planetary surfaces, but also assessing under what conditions its “radiometric clock” can be reset (e.g., during changes in environmental conditions such as temperature). By studying jarosites formed by a variety of processes on Earth, we will be prepared to analyze and properly interpret ages measured from jarosite obtained from future Mars sample return missions.

    ROADMAP OBJECTIVES: 1.1 2.1 7.1
  • Computational Astrobiology Summer School

    The Computational Astrobiology Summer School (CASS) is an excellent opportunity for graduate students in computer science and related areas to learn about astrobiology, and to carry out substantial projects related to the field.

    The two-week on-site part of the program is an intensive introduction to the field of astrobiology. NASA Astrobiology Institute scientists present their work, and the group discusses ways in which computational tools (e.g. models, simulations, data processing applications, sensor networks, etc.) could improve astrobiology research. Also during this time, participants define their projects, with the help of the participating NAI researchers. On returning to their home institutions, participants work on their projects, under the supervision of a mentor, with the goal of presenting their completed projects at an astrobiology-related conference the following year.

    ROADMAP OBJECTIVES: 1.1 1.2 2.1 2.2 3.1 3.2 3.3 3.4 4.1 4.2 4.3 5.1 5.2 5.3 6.1 6.2 7.1 7.2
  • PHL 278: A Gateway Course for a Minor in Astrobiology

    We have recently developed obtained Montana Board of Regents for an undergraduate minor in Astrobiology at Montana State University. The Minor includes courses in Earth Sciences, Physics, Astronomy, Microbiology, Ecology, Chemistry, and Philosophy. Two new courses have been developed as part of the minor, one of which is a gateway or introductory course examines the defining characteristics of life on earth as well as the challenges of a science that studies life and its origin. The other course which will be offered fall 2011 is the capstone course for the minor which will delved into the science of Astrobiology in more detail and targeted for Juniors and Seniors that have fulfilled the majority of the requisite course requirements for the curriculum.

    ROADMAP OBJECTIVES: 1.1 1.2 2.1 2.2 3.1 3.2 3.3 3.4 4.1 4.2 4.3 5.1 5.2 5.3 6.1 6.2 7.1 7.2
  • Habitability of Water-Rich Environments, Task 1: Improve and Test Codes to Model Water-Rock Interactions

    Two new models have been developed in order to calculate 1) phase transitions during concentrating/diluting and cooling/heating in salt-brine-ice systems (from -60°C to 250°C) and 2) the chemical composition of hydrothermal systems. The case of water-granite interaction vs. time has been simulated to test a model of aqueous alteration that combines thermodynamics and kinetics.

  • Postdoctoral Fellow Report: Mark Claire

    I am interested in how biological gases affect the atmosphere of Earth (and possibly other planets.) Specifically, I use computer models to investigate how biogenic sulfur gases might build up in a planetary atmosphere, and if this would lead to observable traces in Earth’s rock record or in the atmospheres of planets around other stars. I’ve also worked on how perchlorate formed in Earth’s Atacama desert as an attempt to explain how perchlorate formed on Mars

    ROADMAP OBJECTIVES: 1.1 1.2 2.1 4.1 7.2
  • Subglacial Methanogenesis and Implications for Planetary Carbon Cycling

    Methanogens are thought to be among the earliest emerging life forms. Today, the distribution of methanogens is narrowly constrained, due in part to the energetics of the reactions which support this functional class of organism (namely carbon dioxide reduction with hydrogen and acetate fermentation). Methanogens utilize a number of metalloenzymes that have active site clusters comprised of a unique array of metals. The goals of this project are 1) identifying a suite of biomarkers indicative of biological CH4 production 2). quantifying the flux of CH~4~ from sub-ice systems and 3). developing an understanding how life thrives at the thermodynamic limits of life. This project represents a unique extension of the ABRC and bridges the research goals of several nodes, namely the JPL-Icy Worlds team and the ASU-Follow the Elements team.

    ROADMAP OBJECTIVES: 2.1 5.1 5.2 5.3 7.1 7.2
  • Habitability of Water-Rich Environments, Task 4: Evaluate the Habitability of Ancient Aqueous Solutions on Mars

    On Earth, hydrothermal systems teem with life and such systems could have been widespread in the solar system. The Mars habitability task has been focusing on understanding how to identify the fingerprints of hydrothermal processes in the ancient rock record, while assessing the potential of hydrothermal deposits to preserve signatures of life. The recent discovery of silica-rich hydrothermal deposits by the Mars Exploration Rover, Spirit, has provided renewed interest in hydrothermal deposits as targets for future in situ robotic missions and sample returns for Astrobiology.

  • Project 3C: Iron Isotope Biosignatures: Laboratory Studies and Modern Environments

    Ancient rocks often carry chemical and isotopic signatures of ancient microbiological processes. However, fluids important in the generation of these signatures are lost upon lithification. Experimental studies in geochemical systems analogous to ancient rock precursors are therefore critical to gain insight into the biogeochemical processes responsible for generating unique chemical or isotopic compositions in ancient rocks. New laboratory studies were conducted to extend our recent work on Fe isotope fractionation during microbial dissimilatory iron reduction (DIR) in the presence of dissolved silica, which was likely abundant in Precambrian oceans. Iron isotope fractionation was investigated during microbial reduction of an amorphous iron oxide-silica coprecipitate in high-silica, low-sulfate artificial Archean seawater to determine if such conditions alter the extent of reduction, or the isotopic fractionations relative to those previously observed in simple systems. These new results show that, relative to simiple systems, significantly larger quantities of low-isotopically-light reduced iron were produced during reduction of the Fe-Si coprecipitate. These findings provide strong support for DIR as a mechanism for producing Fe isotope variations observed in Neoarchean and Paleoproterozoic marine sedimentary rocks.

    ROADMAP OBJECTIVES: 2.1 4.1 5.2 6.1 7.1 7.2
  • Stellar Effects on Planetary Habitability

    Habitable environments are most likely to exist in close proximity to a star, and hence a detailed and comprehensive understanding of the effect of the star on planetary habitability is crucial in the pursuit of an inhabited world. We looked at how the Sun’s brightness would have changed with time. We also model how stars with different masses, temperatures and flare activity affect the habitability of planets, including looking at the effect of a very big flare on a planet’s atmosphere and surface. We find that a planet with an atmosphere like Earth orbiting around a cool red star is fairly well protected from UV radiation, but particles associated with the flare can produce damaging chemistry in the planetary atmosphere that severely depletes the planet’s ozone layer.

    ROADMAP OBJECTIVES: 1.1 1.2 2.1 4.1 4.3 5.3 6.1 7.2
  • Research Activities in the Astrobiology Analytical Laboratory

    We are a laboratory dedicated to the study of organic compounds derived from Stardust and future sample return missions, meteorites, lab simulations of Mars, interstellar, proto-planetary, and cometary ices and grains, and instrument development. Like forensic crime shows, the Astrobiology Analytical Laboratory employs commercial analytical instruments. However, ours are configured and optimized for small organics of astrobiological interest instead of blood, clothing, etc.

    ROADMAP OBJECTIVES: 2.1 3.1 3.2 7.1
  • Super-Earth Atmospheres

    In this task we use computer models to study aspects of the atmospheres of extrasolar super-Earths, planets that orbit other stars that are 2-10 times more massive than the Earth. Significant progress was made this year on three models, one that calculates how the atmosphere of the super-Earth is affected by radiative and particles coming from its parent star, one that calculates the surface temperature and change in atmospheric temperature with altitude for superEarth atmospheres and another that can model the synthetic spectrum of a superEarth when it passes in front of its star as seen from Earth.

    ROADMAP OBJECTIVES: 1.1 2.1 3.1
  • Project 4B: Development of Laser Ablation-Miniature Mass Spectrometer (LA-MMS) for Geochronology and Geochemistry of Martian Rocks

    Our goal is to develop a breadboard instrument for isotopic analysis of solids and age dating of different rocks based on Rb-Sr radiometric technique. This is based on the methodology of laser ablation-miniature mass spectrometer (LA-MMS). It performs the mass spectral and isotopic measurements of the laser ablated vapors from solids using the miniature mass spectrometer (MMS) and the modified CCD based array detector for the direct and simultaneous measurement of different mass ions. The approach has been demonstrated at the Jet Propulsion Laboratory by the chemical and isotopic analysis of gas and solid samples. The breadboard version of the above instrument can be miniaturized to meet the requirements of a rover based spacecraft instrument for applications to various NASA missions.

  • Project 5A: Astrobiology Studies at the Utah Mars Desert Research Station in Support of Current and Future Mars Missions

    Pascale Ehrenfreund participated to Crew #77 at the Mars Desert Research Station (MDRS) in Utah in February 2009. The MDRS project was initiated by the Mars Society in 2000 and consists of a habitat complex optimized for a 6-person crew and includes a greenhouse and astronomical observatory. The goal of this field campaign sponsored by ESA, NASA and the international lunar exploration working group (ILEWG) was to demonstrate instrument capabilities in support of current and future planetary missions, to validate a procedure for Martian surface in-situ and return science, and to study human performance aspects. Special emphasis was given to sample collection in the geologically rich vicinity of MDRS and subsequent analysis of organic molecules and microorganisms in the soil to simulate the search for life with field instrumentation.

  • Project 5B: Detection of Biosignatures in Extreme Environments, Analogs for Mars

    The planet Mars may have been warmer in the past and at one time probably had an acidic, wet environment but currently it is cold and dry. Past conditions and maybe even present ones, although extreme, could support microbial life and we have investigated life in two extreme analog environments. The Río Tinto is an acid river is Spain where from an airborne remote survey we have monitored the progress of a metabolic process in which iron, rather than carbon, is oxidized by bacteria. At the site of a former munitions factory in Israel we have shown that bacteria can live off the chemical energy of the chemical compound perchlorate (recently found on Mars), despite adverse conditions and negligible amounts of water in the environment.

  • Understanding the Early Mars Environment

    In 2009-2010, VPL’s investigations into Mars were carried out in two major themes: investigation of the how the climate and chemistry of early Mars might (or might not) allow liquid water at the surface, and follow up science to the surprising discovery of perchlorate by NASA’s 2008 Phoenix Lander. VPL determined that, contrary to previous thought, SO2 could not keep early Mars warm, due to the inevitable formation of sulfate aerosols which counteract any warming due to SO2. Investigations into the formation of perchlorate in Earth’s deserts provide clues towards potential formation of Martian perchlorate, and specific predictions were made to all for future rovers to discriminate between evaporated versus frozen perchlorate minerals.

  • Mars Bulk Composition and Aqueous Alteration

    The bulk composition of Mars, including its total inventory of water, is central to understanding how Mars and the other inner planets formed. Comparison between the abundances of water and volatile elements in Mars, Earth, and Moon are particularly important to understand the source of water to the Earth. Martian bulk composition is also crucial to elucidating the processes involved in the initial differentiation into core, mantle and crust, and to the subsequent geologic evolution of the crust. Unraveling and quantifying the details of aqueous alteration on Mars is central to assessing the planet’s habitability and much of its geologic evolution. It also bears on determining Martian bulk composition and the source of planetesimals that accreted to form Mars.

  • Project 5C: Fluid-Mineral Fractionation of Mg Isotopes and Tracing the Origin of Sulfate Minerals

    We are developing an experimental program to characterize the Mg isotope fractionation between fluids and minerals in order to use the Mg isotope system to characterize the paleoenvironmental conditions of ancient terrestrial rocks and samples from Mars. Our initial work has focused on Mg isotope fractionation between aqueous Mg and epsomite. Magnesium sulfate is present on the surface of Mars, where, for example, up to 36 wt. % sulfate has been found in some outcrops on the Martian surface, of which Mg-sulfate is the most abundant (Clark et al., 2005). Sulfates are a major water reservoir for the Martian surface and thus it is inferred that there was a period of aqueous alteration on Mars (e.g., Wang et al., 2008). Knowledge of the controls on Mg isotope fractionation in the system fluid and Mg sulfate will allow us to ultimately characterize the evaporation rates and Mg fluxes that occurred during one of the wettest periods in Mars History.

    ROADMAP OBJECTIVES: 2.1 4.1 7.1 7.2
  • Project 5D: The Rock That Started It All: Geochronology of Mars Meteorite ALH84001

    The possible biosignatures that were discovered in Martian meteorite ALHA84001 by McKay et al. (1996) can be significantly credited with establishing the NAI. Despite the importance of this sample in spurring a variety of research efforts to evaluate how one could determine if there was ancient life on other planets, we still do not convincingly know the age of this sample. Original geochronologic work indicated that this sample crystallized soon after planetary accretion at ~4.5 Ga (e.g., Nyquist et al., 2001). We have begun re-evaluating the crystallization age of this meteorite using new geochronologic techniques, and based on these new results the crystallization age for this sample is in need of revision and we suggest that an age of 4.09 Ga is more appropriate (Lapen et al., 2010). This younger age fits much better into generally accepted models for the early evolution of Mars.

  • Permafrost in Hawaii

    Microclimates are small areas where climate conditions differ from the surrounding area. This can lead to the occurrence of permafrost in otherwise ice-free areas. Although the summit of Mauna Kea, Hawaii is exceptionally dry, sporadic permafrost exists in cinder cones near the summit. Additionally, ice caves are known to exist on the flanks of Mauna Loa, Hawaii. The reasons for the persistence of the ice are inadequately understood. Theoretical models have been developed to illuminate microclimatic effects. The microclimates, in the craters and the ice caves, also serve as analogues for microclimates on Mars, where sporadic ice patches can be found in relatively warm regions.

  • Quantification of the Disciplinary Roots of Astrobiology

    While astrobiology is clearly an interdisciplinary science, this project seeks to address the question of how interdisciplinary it is. We are reviewing published works across a broad range of scholarly databases, comparing disciplinary indicators such as subject terms, journal titles and author affiliations, and creating a computational model to identify and compare the makeup of astrobiological research literature in terms of the proportion of work that come from constituent fields.

    ROADMAP OBJECTIVES: 1.1 1.2 2.1 2.2 3.1 3.2 3.3 3.4 4.1 4.2 4.3 5.1 5.2 5.3 6.1 6.2 7.1 7.2